
Introduction aux interruptions, les interruptions externes et les interruptions à intervalle
régulier.

Ateliers Arduino
par X. HINAULT

 www.mon-club-elec.fr

Tous droits réservés – 2012.

Ce document légèrement payant est soumis au droit d'auteur et est réservé à l'usage personnel.
Afin d'encourager la production de supports didactiques de qualité, ce document est légèrement payant.

La licence d'utilisation est attribuée pour un usage personnel uniquement, dans le cercle familial. Mise en ligne et diffusion non autorisées.
Si vous n'êtes pas le détenteur de la licence attribuée pour l'usage de ce document, soyez sympa, merci d'acheter votre exemplaire personnel ici : https://monclubelec.dpdcart.com/

Pour tout problème lié à l'utilisation de ce document, veuillez envoyer une copie ici : support@mon-club-elec.fr
Pour obtenir tout autres types de licence d'utilisation (enseignement, commercial, etc...), veuillez contacter l'auteur ici : support@mon-club-elec.fr

Vous avez constaté une erreur ? une coquille ? N'hésitez pas à nous le signaler à cette adresse : support@mon-club-elec.fr

Truc d'utilisation : visualiser ce document en mode diaporama dans le visionneur PDF. Navigation avec les flèches HAUT / BAS ou la souris.

En mode fenêtre, activer le panneau latéral vous facilitera la navigation dans le document. Bonne lecture !

Lancer également le logiciel Arduino et connecter votre carte Arduino afin de pouvoir tester au fur et à mesure les codes d'exemples !

Atelier Arduino : Introduction aux interruptions, les interruptions externes et les interruptions à intervalle régulier. p.1/41

Purchased by Paul Frogerais, paul.frogerais@gmail.com #4605415

http://www.mon-club-elec.fr/
mailto:support@mon-club-elec.fr
mailto:support@mon-club-elec.fr
mailto:support@mon-club-elec.fr
https://monclubelec.dpdcart.com/

1. Intro

L'objectif ici est :

• de découvrir le concept d'interruption

• de comprendre comment fonctionne une interruption

• d'apprendre à utiliser les interruptions externes

• d'apprendre à utiliser les interruptions à intervalles réguliers

… afin d'être en mesure de créer des programmes plus efficients et optimisant les temps d'utilisation du microprocesseur de l'Arduino.

Prêt ? C'est parti !

Remarque :

Le domaine des interruptions est un peu plus compliqué à maîtriser que la programmation « classique », mais en apprenant à utiliser une interruption comme
présenté ici, vous posez du même coup les bases de la compréhension des « signaux » ou « événements » qui sont très utilisés par les langages de « haut niveau »

orientés objets tel que Java ou Python, notamment pour la mise en place d'interfaces graphiques côté PC.

Pratique :

Les codes de cet atelier sont disponibles ici :

https://github.com/sensor56/255df4edf7460b622b76d2d4ebd89251

Atelier Arduino : Introduction aux interruptions, les interruptions externes et les interruptions à intervalle régulier. p.2/41

Purchased by Paul Frogerais, paul.frogerais@gmail.com #4605415

https://github.com/sensor56/255df4edf7460b622b76d2d4ebd89251

2. Matériel nécessaire pour les ateliers Arduino
Pour cet atelier, vous aurez besoin de tout ou partie des éléments suivants pour pouvoir réaliser les exemples proposés :

De l'espace de développement Arduino

L'espace de développement Arduino associe :

• un ordinateur sous Windows, Mac Os X ou Gnu/Linux (Ubuntu)

• avec le logiciel Arduino installé (voir : http://www.arduino.cc/)

• un câble USB

• une carte Arduino UNO ou équivalente.

disponible chez : http://shop.snootlab.com/ ou http://www.gotronic.fr/

Du nécessaire pour réaliser des montages sans soudure

Pour réaliser des montages sans soudure, vous aurez besoin :

• d'une plaque d'essai ou breadboard moyenne (450 points)

• de quelques câbles souples (ou jumpers) mâle/mâle

disponible chez : http://www.gotronic.fr/

De quelques composants de base

Pour vous simplifier la vie, nous avons négocié ce kit pour vous !

Vous pouvez commander ce kit complet directement en 1 clic chez notre partenaire
http://www.gotronic.fr/ avec le code express 701710

Pour plus de détails, voir : http://www.mon-club-elec.fr/pmwiki_mon_club_elec/pmwiki.php?n=MAIN.ATELIERS

Pour les ateliers Arduino niveau débutant, vous devrez idéalement disposer
des composants suivants :

• des LEDs 5mm Rouges(x20), Vertes (x5) et 3 Jaunes (x5)
• digit à cathode commune rouge 13mm (x1)
• Résistances (1/4w - 5%) de 270 Ohms (x20), 4,7K Ohms (x1), 1K Ohms (x1)
• mini bouton-poussoir (x3)
• Opto-fourche (x 1)
• Résistance variable linéaire 10K (x 1)
• Photo-résistance 7mm (x 1)
• Capteur de température LM35DZ (-55/+150°C - 10mV/°C) (x 1)
• Capsule son piézoélectrique (x 1)
• ULN 2803A (CI amplificateur 8 voies, 500mA/ voie) (x 1)
• LED 5mm multicolore RVB cathode commune (x 1)

Atelier Arduino : Introduction aux interruptions, les interruptions externes et les interruptions à intervalle régulier. p.3/41

Purchased by Paul Frogerais, paul.frogerais@gmail.com #4605415

http://www.mon-club-elec.fr//pmwiki_mon_club_elec/pmwiki.php?n=MAIN.ATELIERS
http://www.gotronic.fr/
http://www.gotronic.fr/
http://www.gotronic.fr/
http://shop.snootlab.com/
http://www.arduino.cc/
http://www.gotronic.fr/art-kit-debutant-atelier-arduino-mon-club-elec-fr-18104.htm

3. Les limites de l'écriture « séquentielle » d'un programme

Le déroulement type d'un programme
• Jusqu'à présent vous avez écrit des programmes qui s'exécutaient de

façon dite « séquentielle », autrement dit les instructions étaient
exécutées dans l'ordre chronologique de leur enchaînement dans
votre code.

• Rappelons le déroulement type d'un programme Arduino :

◦ la première fonction qui est appelée est la fonction setup() :

▪ elle n'est exécutée qu'une seule fois et en premier au début du
programme,

▪ on y place les instructions d'initialisation et de configuration
du programme qui sont exécutées dans l'ordre.

◦ ensuite, la fonction loop() :

▪ est exécutée en boucle, se répétant indéfiniment tant que le
programme n'est pas interrompu.

▪ on y place les instructions à exécuter de façon répétée en
boucle. Les instructions sont exécutées dans l'ordre.

• Cette structure de base du programme est complétée, comme vous le
savez, au besoin par l'écriture de fonctions séparées qui sont appelées
à la demande soit depuis loop() ou depuis setup().

Le problème
Cette structure de programme, même si elle performante et satisfaisante dans
la plupart des situations, trouve ses limites dans au moins 2 situations type :

Lecture de l'état d'une broche en entrée

• lorsque l'on utilise des dispositif en entrée, notamment un bouton
poussoir, un appui ne va être détecté uniquement si l'état de la broche
du bouton poussoir est lue à ce moment précis.

• Si le programme est court, cela ne pose pas de problème, la vitesse du
microprocesseur d'Arduino est telle que l'état de la broche est lue
plusieurs milliers de fois par secondes.

• Mais si le programme s'allonge ou si certaines actions intermédiaires
prennent du temps, l'état de la broche ne peut être lue que
épisodiquement...

• Il serait bien de pouvoir détecter un changement de l'état de la broche
exactement au moment où elle survient...

Temporisation et pause

• lorsque l'on souhaite répéter une action à intervalle régulier, on utilise
comme nous l'avons vu une pause, avec l'instruction delay().

• lorsque l'on fait clignoter une LED par exemple, on utilise une pause
entre chaque changement d'état de la LED. L'inconvénient de cette
façon de faire est facile à comprendre : si on fait faire quoi que ce soit
au microprocesseur, cela va modifier le délai de clignotement. Et à
l'inverse le microprocesseur va passer la majorité de son temps à ne
rien faire, si ce n'est attendre...

• Là encore, il serait pratique de pouvoir changer l'état de la LED
uniquement au moment voulu, indépendamment des autres tâches
que le microcontrôleur doit exécuter...

La solution : utiliser une interruption
• La solution à ces 2 types de situation passe parce que l'on appelle une

interruption. Une interruption, en bref, permet de stopper le
programme à n'importe quel moment lorsqu'un événement
déclencheur survient et à exécuter le code voulu, avant de
reprendre l'exécution normalement.

• Dans le premier cas, l'interruption sera déclenchée au changement
d'état de la broche, dans le second cas, lorsque le délai voulu sera
écoulé.

Atelier Arduino : Introduction aux interruptions, les interruptions externes et les interruptions à intervalle régulier. p.4/41

Purchased by Paul Frogerais, paul.frogerais@gmail.com #4605415

4. Principe d'une interruption et déroulement d'un programme utilisant une interruption

Une image pour comprendre
• Imaginez quelqu'un qui est en train de lire un livre (ou un atelier

Arduino...) et soudain le téléphone sonne. Que va faire cette
personne ?

◦ elle va poser son livre en marquant l'endroit où elle est arrivée

◦ elle va prendre son téléphone et répondre à l'appel

◦ puis une fois la conversation terminée, elle va revenir s'asseoir et
reprendre la lecture de son livre là où elle s'était arrivée.

• Une autre image : imaginez un enfant en train de jouer dans sa
chambre à un jeu de construction. Sa mère l'appelle : « A table ! » Que
va-t-il faire ?

◦ il va laisser sa construction en l'état,

◦ il va venir s'asseoir à la table familiale, va manger...

◦ puis le repas terminé, il va retourner dans sa chambre et
reprendre son jeu là où l'avait laissé.

Si vous avez compris ces 2 images, alors vous avez compris ce qu'est une
interruption !

Principe général d'une interruption
• Le principe général d'une interruption est le suivant :

◦ le microprocesseur est en train d'exécuter le programme dans
l'ordre des instructions

◦ soudain survient un événement déclencheur de l'interruption : le
microprocesseur va alors interrompre ce qu'il est en train de faire
tout en mémorisant l'endroit de l'arrêt

◦ il va lire et exécuter le code présent dans une fonction spéciale
que l'on appelle « routine de gestion de l'interruption »

◦ puis, une fois terminé, il va reprendre l'exécution du programme
là où il s'était arrêté.

Déroulement d'un programme utilisant une interruption
Le déroulement global d'un programme utilisant une interruption devient
alors :

• exécution de la fonction setup()

• exécution de la fonction loop() en boucle

• à n'importe quel moment, lors de la survenue d'une interruption, la
fonction de gestion de l'interruption est exécutée

• puis le programme reprend son cours...

L'avantage d'une interruption est triple :

Le code est exécuté immédiatement si l'événement déclencheur a lieu !

Le code est exécuté seulement si l'événement déclencheur a lieu !

Le microcontrôleur est libre de faire autre chose entre deux événements !

Atelier Arduino : Introduction aux interruptions, les interruptions externes et les interruptions à intervalle régulier. p.5/41

Purchased by Paul Frogerais, paul.frogerais@gmail.com #4605415

5. Technique : pour info : la machinerie interne d'une interruption

Le microcontrôleur, vu de l'intérieur...
• Même si l'utilisation est interruptions est simplifiée avec Arduino, il

est intéressant de savoir comment çà marche au niveau matériel au
sein du microcontrôleur.

• Un microcontrôleur, en interne, c'est un peu comme un cockpit
d'avion :

◦ il y a pleins d'interrupteurs On/Off qui permettent
d'activer/désactiver des fonctions : les bits d'activation.

◦ il y a plein de voyants qui signalent tel ou tel événement : les bits
de drapeau.

Principe du contrôle d'une interruption
• Le contrôle d'une interruption va nécessiter typiquement :

◦ un bit d'activation de l'interruption : c'est l'équivalent d'un
interrupteur On/Off qui doit être mis à On...

◦ un bit de drapeau flag, témoin que l'interruption a eu lieu... : c'est
l'équivalent d'un témoin qui s'allume lorsque l'interruption a eu
lieu...

Activation d'une interruption
• Pour qu'une interruption soit prise en compte, c'est à dire capturée

lorsque l'événement voulu surviendra :

◦ le bit général d'activation des interruptions doit être à 1

◦ le bit d'activation de l'interruption voulue doit être à 1

Déroulement d'une interruption
• En interne, lorsqu'une interruption survient, le microprocesseur :

◦ met le drapeau à 1

◦ saute à une zone spéciale de la mémoire programme
correspondant à la routine d'interruption (parfois appelée aussi
ISR pour Interruption Service Routine) :

▪ à ce niveau, au sein du code, on peut tester les « flags » pour
savoir quelle interruption à été déclenchée

▪ le code voulu est exécuté

◦ le drapeau doit être remis à 0

◦ puis le microcontrôleur quitte la routine d'interruption et reprend
l'exécution du programme là où elle s'était interrompue.

Remarque

Encore une fois, les choses seront beaucoup plus simples avec Arduino, mais
je prends le temps de vous détailler toute cette machinerie sous-jacente pour
que vous ayez conscience de ce qui se passe lorsqu'une interruption survient.

Atelier Arduino : Introduction aux interruptions, les interruptions externes et les interruptions à intervalle régulier. p.6/41

Purchased by Paul Frogerais, paul.frogerais@gmail.com #4605415

6. Pour info : les interruptions du microcontrôleur ATMega 328 (celui des cartes Arduino UNO)

Vue d'ensemble
Pas de panique : je donne ces détails juste pour info !

• Elles sont très nombreuses, jugés plutôt :

Classification des interruptions
• On peut distinguer notamment :

◦ les interruptions sur broches E/S

◦ les interruptions des Timers (0, 1 et 2)

◦ les interruptions de communication série USART

◦ les interruptions de communication SPI et I2C

◦ l'interruption de conversion analogique-numérique

◦ l'interruption d'EEprom

Interruptions « invisibles » utilisées par le langage Arduino
• Sans que vous le sachiez forcément, le langage Arduino utilise en

interne certaines interruptions pour son propre fonctionnement.

• Les fonctions qui utilisent des interruptions sont :

◦ les fonctions millis(), delay() et micros() utilisent le timer 0

◦ la fonction tone() utilise le timer 2

◦ la fonction analogWrite() utilise les timer 1 et 2

◦ ...

• Les librairies qui utilisent (à priori) des interruptions :

◦ la librairie Serial

◦ la librairie Servo utilise le timer 1

◦ la librairie Wire utiliser l'interruption I2C

◦ la librairie SPI utilise l'interruption SPI

◦ …

Interruptions accessibles à partir du langage Arduino
• Ce sont ces interruptions les plus intéressantes : celles que l'on va

pouvoir utiliser !

• La première chose possible avec le langage Arduino : activer ou
désactiver l'utilisation de l'ensemble des interruptions.

• Les interruptions accessibles sont par ailleurs :

◦ des interruptions dites externes, c'est à dire les interruptions
déclenchées lors d'un changement d'état d'une broche.

◦ mais aussi des interruptions des timers qui restent accessibles à
l'aide de librairies dédiées... (usage « avancé »)

Atelier Arduino : Introduction aux interruptions, les interruptions externes et les interruptions à intervalle régulier. p.7/41

Purchased by Paul Frogerais, paul.frogerais@gmail.com #4605415

7. Arduino : Les instructions d'activation / désactivation générale des interruptions

Au démarrage
• La première chose importante à savoir : les interruptions sont

activées par défaut lorsque l'on exécute un programme
Arduino et certaines sont utilisées par les fonctions Arduino, comme
nous l'avons précisé précédemment.

Pour info : le principe d'activation des interruptions
• Comme nous l'avons vu précédemment, pour qu'une interruption

voulue soit active, il est nécessaire que son « bit d'activation » soit
égal à 1

• ... autrement dit, il faut que son « interrupteur d'activation » soit sur
ON, pour reprendre l'image du cockpit d'avion.

• Ceci est vrai pour chaque interruption individuelle... mais il existe
un bit d'activation général des interruptions : c'est ce bit
d'activation qui est mis à 1 ou 0 par les instructions que nous allons
voir ici. Ce bit permet d'activer / désactiver toutes les
interruptions à la fois.

Les instructions d'activation/désactivation des interruptions
• Il est donc possible, comme nous venons de le dire, à tout moment,

d'activer/désactiver toutes les interruptions, ceci grâce à 2
instructions du langage Arduino :

◦ l'instruction noInterrupts() : désactive toutes les interruptions

◦ l'instruction interrupts() : active toutes les interruptions

• A savoir : ces instructions sont en fait une réimplémentation de deux
instructions du langage C natif, qui font la même chose :

◦ sei() : activation générale des interruptions

◦ cli() : désactivation générale des interruptions

• Pour preuve, voici la définition des fonction interrupts() et
noInterrupts() dans le fichier Arduino.h :

#define interrupts() sei()

#define noInterrupts() cli()

• La forme C sei() et cli() est directement utilisable dans un programme
Arduino : il pourra d'ailleurs vous arriver de la rencontrer.

ATTENTION
Je vous donne l'information sur ces instructions d'activation / désactivation générale des

interruptions uniquement pour que vous sachiez qu'elles existent.

En pratique, il est déconseillé de désactiver la totalité des
interruptions car on s'expose alors à des comportements inattendus et compliqués à

déboguer :

> des fonctions du langage Arduino utilisant les interruptions (delay(), PWM, etc...) qui ne
fonctionneront plus,

> des librairies utilisant des interruptions qui ne fonctionneront plus, (notamment la librairie
Wire, qui de plus utilise une interruption « bloquante » tant qu'une communication n'est pas

terminée... ou encore la librairie Servo... etc...)

A retenir : en pratique, ne pas utiliser cli() ou noInterrupts() :

çà vous évitera de perdre trop vite vos cheveux !

sauf éventuellement au sein de la routine d'interruption,

afin d'éviter un re-déclenchement intempestif de l'interruption.

Atelier Arduino : Introduction aux interruptions, les interruptions externes et les interruptions à intervalle régulier. p.8/41

Purchased by Paul Frogerais, paul.frogerais@gmail.com #4605415

8. Arduino : Présentation des interruptions externes et des instructions associées

Les interruptions externes: principe
• Le microcontrôleur utilisé sur la carte Arduino dispose au niveau

matériel de plusieurs interruptions attachées à des broches : lorsque
l'état de la broche sera modifié, l'interruption sera déclenchée.

• C'est ce que l'on appelle une interruption « externe » : ceci est
potentiellement très pratique pour prendre en compte un événement
dès qu'il survient.

• La bonne nouvelle, c'est que le langage Arduino dispose de plusieurs
instructions qui permettent d'utiliser et paramétrer simplement ces
interruptions dites « externes ».

Les différents événements déclencheurs possibles
• Comble de la sophistication, l'interruption externe va pouvoir être

déclenchée lors de la survenue d'une modification précise de l'état de
la broche et il va logiquement être possible de choisir la modification
qui devra déclencher l'interruption.

• Une broche pourra se trouver dans 4 états différents :

◦ 2 états fondamental :
▪ soit niveau HAUT (ou HIGH)

▪ soit niveau BAS (ou LOW)

◦ et 2 transitions :
▪ soit front descendant (ou « FALLING »)

▪ soit front montant (ou « RISING »)

Les broches utilisables
• La plupart des cartes Arduino ont deux interruptions externes :

◦ interruption externe n°0 sur la broche numérique 2

◦ et interruption externe n°1 sur la broche numérique 3.

• La carte Arduino Mega en possède quatre de plus : interruption
externe n°2 sur la broche 21, n°3 sur la broche 20, n°4 sur la broche 19
et n°5 sur la broche 18.

Les instructions Arduino utilisables
• Les instructions de configuration des interruptions externes sont les

suivantes :

• Tout d'abord, pour configurer l'interruption externe, l'instruction
attachInterrupt (interruption, fonction, mode) où :

◦ interruption : le numéro de l'interruption (type int) :

▪ 0 pour la broche 2

▪ 1 pour la broche 3

◦ fonction: la fonction à appeler quand l'interruption survient; la
fonction ne doit recevoir aucun paramètres et ne renvoie rien.
Cette fonction est également appelée une routine de service
d'interruption (ou ISR).

◦ mode : définit la façon dont l'interruption externe doit être prise
en compte. Quatre constantes ont des valeurs prédéfinies
valables :

▪ LOW : pour déclenchement de l'interruption lorsque la broche
est au niveau BAS

▪ CHANGE : pour déclenchement de l'interruption lorsque la
broche change d'état BAS/HAUT, quelque soit le sens

▪ RISING : pour déclenchement de l'interruption lorsque la
broche passe de l'état BAS vers HAUT (front montant)

▪ FALLING : pour déclenchement de l'interruption lorsque la
broche passe de l'état HAUT vers l'état BAS (front
descendant)

• Pour désactiver l'interruption externe, l'instruction
detachInterrupt(interruption) où :

◦ interruption : le numéro de l'interruption (type int)

Atelier Arduino : Introduction aux interruptions, les interruptions externes et les interruptions à intervalle régulier. p.9/41

Purchased by Paul Frogerais, paul.frogerais@gmail.com #4605415

9. Arduino : Variables et interruptions : utiliser le qualificateur de variable volatile

Le stockage des variables « classique »
• Typiquement, lorsque l'on utilise une variable au sein d'un

programme Arduino celle-ci est stockée dans un registre, espace de
mémoire temporaire.

• Dans le cas de l'exécution d'un code classique, cela ne pose aucun
problème. Par contre, dès lors que l'on va utiliser les interruptions,
dans certaines situations, les variables « classiques » peuvent ne plus
être accessibles à partir du code l'interruption, ce qui pose problème.

La solution ? Utiliser le qualificateur de variable « volatile »
• Il est possible avec le langage Arduino d'utiliser ce que l'on appelle un

« qualificateur de variable », qui va indiquer un comportement
particulier d'une variable donnée.

• Vous connaissez déjà le qualificateur de variable const qui transforme
une variable en une constante, c'est à dire que sa valeur ne sera pas
changée au cours du programme (voir l'atelier consacré aux
variables).

• Dans notre cas, nous allons pouvoir utiliser le qualificateur de
variable volatile

• Comme son nom ne l'indique pas, ce qualificateur va indiquer à
Arduino (au compilateur pour être précis), de stocker la variable en
RAM de façon à ce qu'elle soit accessible en tout point du code,
notamment aussi bien dans la routine d'interruption que dans les
fonctions loop() et setup()

Principe d'utilisation
volatile int state = LOW; // déclaration variable stockée en RAM

Code d'exemple

// inverse l'état de la LED quand une interruption par changement d'état
d'une broche survient

int pin = 13;
volatile int state = LOW; // déclaration variable volatile = stockée en
RAM

void setup()
{
 pinMode(pin, OUTPUT);
 attachInterrupt(0, blink, CHANGE); // Attache l'interruption à la
fonction blink
}

void loop()
{
 digitalWrite(pin, state); // met la broche dans l'état voulu
}

void blink() // la fonction appelée lorsque l'interruption survient
{
 state = !state; // inverse l'état de la variable
}

Voilà, à ce stade, vous êtes parés pour passer à l'action avec les interruptions externes, ce que nous allons faire à présent !

Atelier Arduino : Introduction aux interruptions, les interruptions externes et les interruptions à intervalle régulier. p.10/41

Purchased by Paul Frogerais, paul.frogerais@gmail.com #4605415

10. Rappel : Fiche composant : découvrir le transistor et le photo-transistor

Description
En électronique, le transistor est un composant semi-conducteur (il en existe 2
types dits PNP ou NPN) dans un petit boitier qui dispose de 3 broches :

• la base B qui reçoit une intensité de déclenchement Ib

• le collecteur C qui laisse entrer une intensité Ic porportionnelle à Ib

• l'émetteur E qui laisse sortir une intensité valant Ie=Ic+Ib

A savoir :
Le transistor est un composant essentiel, qui date des années 40, et qui a révolutionné

l'électronique et permis l'apparition de l'électronique numérique et des ordinateurs. Les
processeurs des ordinateurs actuels possèdent des millions de transistors miniaturisés !!

Le micro-contrôleur de votre carte Arduino lui-même intègre environ 500 000
transistors !

Principe de fonctionnement
Le principe fondamental de fonctionnement d'un transistor est le suivant : une
petite intensité circulant sur la broche de la base va provoquer la circulation
d'une intensité importante proportionnelle entre le collecteur et l'émetteur.

Pour faire simple, on peut dire qu'un transistor est un « multiplicateur »
d'intensité : il multiplie l'intensité de la base et l'intensité résultante circule
entre le collecteur et l'émetteur. Le coefficient multiplicateur est appelé gain.

Modes de fonctionnement d'un transistor
Le transistor est un composant qui peut être utilisé aussi bien en mode
analogique que « numérique » :

• en mode analogique, la variation d'intensité sur la base se répercute immédiatement
en variation d'intensité du collecteur. C'est ce principe qui est à la base des
amplificateurs audio et autres appareils de radio (dont lui vient d'ailleurs le nom de
transistor).

• en mode « numérique » ou « ON/OFF » appelé également mode saturé : dès
qu'une intensité est présente sur la base, le courant de collecteur est d'emblée maximal.
L'absence de courant sur la base ne laisse passer aucun courant de collecteur. C'est une
sorte d'interrupteur à commande électrique. C'est ce mode de fonctionnement qui est à
la base de tous les circuits logiques et numériques.

Une variante du transistor : le photo-transistor
Dans ce composant, la broche de la base est remplacée par une zone sensible à
la lumière infra-rouge. Le photo-transistor n'a donc que 2 broches :

Le principe de fonctionnement est le suivant : une intensité lumineuse
présente sur la zone photo-sensible va provoquer la circulation d'un courant
de collecteur qui sera proportionnel à l'intensité lumineuse reçue.

Le photo-transistor pourra être utilisé soit en mode analogique ou saturé.

Les transistors avec Arduino en pratique
Afin de ne pas compliquer inutilement les montages, en pratique, on
n'utilisera quasiment pas les transistors « bruts » avec Arduino, mais plutôt
des circuits les utilisant tels que le circuit intégré ULN 2803 qui intègre 8
étages d'amplification ON/OFF et ne nécessite aucun composant externe.

Par contre, on utilisera le photo-transistor, utilisé au sein des opto-coupleurs,
comme nous allons le voir par la suite.

Remarque : l'étude des transistors et de leur utilisation est un domaine
passionnant et qui peut faire l'objet de livres entiers. Ici, nous en parlons

uniquement pour introduire le photo-transistor. Si vous voulez approfondir,
voir notamment : http://fr.wikipedia.org/wiki/Transistor

Atelier Arduino : Introduction aux interruptions, les interruptions externes et les interruptions à intervalle régulier. p.11/41

Purchased by Paul Frogerais, paul.frogerais@gmail.com #4605415

http://fr.wikipedia.org/wiki/Transistor

11. Rappel : Fiche composant : découvrir l'opto-coupleur en fourche

Description
L'opto-coupleur en fourche est un composant qui associe en fait 2 composants
différents qui sont positionnés face à face dans un même boitier (2 broches par
composant soit 4 broches en tout) :

• d'une part une photo-diode ou LED infra-rouge qui fonctionne comme
une LED classique et émet une lumière invisible dite infra-rouge,

• d'autre part un photo-transistor infra-rouge utilisé ici pour détecter la
présence de la lumière infra-rouge (patte courte = Emetteur).

Schéma interne
Le schéma théorique de l'optocoupleur est le suivant :

• On retrouve d'une part la LED infra-rouge signalée par les lettres A et
K sur le boitier de l'opto-coupleur correspondant à l'anode (A = +) et
la cathode (K = - = patte courte)

• On retrouve d'autre part le photo-transistor signalé par les lettres C et
E sur le boitier de l'opto-coupleur correspondant au collecteur (C = +)
et à l'émetteur (E = - = patte courte).

Principe de fonctionnement
• Lorsque la LED infra-rouge est allumée, la base du photo-transistor

est éclairée et le photo-transistor laisse passer le courant.

• Lorsque la LED infra-rouge est éteinte, ou si un objet se trouve dans la
fente, la base du photo-transistor ne laisse passer aucun courant.

Le montage type
L'utilisation de ce composant nécessite en fait la réalisation de 2 circuits :

• tout d'abord, le circuit de la LED infra-rouge, qui s'utilise comme une
LED standard. On pourra donc se contenter de mettre une résistance
en série avec LED pour qu'elle soit allumée. Comme vu précédemment, si
on désire une intensité de 13mA dans la LED, on utilisera, d'après la loi
d'ohm, une résistance de R=U/I = 3,5V/0,013A= 270 Ohms.

• le circuit du photo-transistor qui sera ici utilisé en mode saturé,
autrement dit :

◦ si pas d'objet dans la fente = lumière IR présente, alors la tension
du collecteur vaudra 0V

◦ si objet présent dans la fente = pas de lumière IR, alors la tension
du collecteur vaudra 5V

◦ pour obtenir ce résultat, on se contente d'utiliser une résistance de
quelques milliers d'Ohms entre le collecteur et le +5V. En
pratique, on utilisera 4,7KOhms avec un LTH301-7.

Principe d'utilisation sur une plaque d'essai
L'opto-coupleur s'utilise simplement, à cheval sur le rail central :

Atelier Arduino : Introduction aux interruptions, les interruptions externes et les interruptions à intervalle régulier. p.12/41

Purchased by Paul Frogerais, paul.frogerais@gmail.com #4605415

12. Pour info : le spectre des ondes électro-magnétiques et de la lumière visible

http://fr.wikipedia.org/wiki/Fichier:Spectre.svg

La lumière, tout comme les ondes radio ou les micro-ondes sont des ondes dites « électro-magnétiques »

source : http://www.lampexpress.fr/images/ampoules-fiche-technique/spectre-lumiere.jpg

La lumière visible ne représente qu'une toute petite partie de l'ensemble des ondes électro-magnétiques.

La lumière infra-rouge, à laquelle est sensible le photo-transistor, est une lumière invisible à l'oeil nu, de même que la lumière ultra-violette.

Atelier Arduino : Introduction aux interruptions, les interruptions externes et les interruptions à intervalle régulier. p.13/41

Purchased by Paul Frogerais, paul.frogerais@gmail.com #4605415

http://www.lampexpress.fr/images/ampoules-fiche-technique/spectre-lumiere.jpg
http://fr.wikipedia.org/wiki/Fichier:Spectre.svg

13. Rappel : Utiliser un opto-coupleur en fourche en tant que capteur numérique : le montage
On reprend ici simplement le montage type de l'opto-coupleur vu
précédemment. On connecte l'émetteur sur une broche analogique de la carte
Arduino :

Comprendre comment çà marche
• Lorsqu'un objet est présent dans la fente, aucune lumière n'est

détectée par le photo-transistor et donc aucune intensité ne circule
dans le collecteur. La tension de la résistance en série vaut donc U = R
x I = 0 V

• Lorsqu'aucun objet n'est présent dans la fente, la lumière est détectée
par le photo-transistor et donc le courant circule dans le collecteur. La
tension de la résistance en série vaut donc U = R x I ~ 5 V

Truc de repérage :

Pour la LED, la broche courte est la cathode et la longue l'anode,

pour le photo-transistor, la broche courte est l'émetteur et la longue le
collecteur.

Truc pratique : pour vérifier que la LED s'allume bien, enlever l'opto-
coupleur et remplacez-le par une LED normale. Si elle s'allume, tout est bien

connecté. Ensuite, remettre l'opto-coupleur.

Atelier Arduino : Introduction aux interruptions, les interruptions externes et les interruptions à intervalle régulier. p.14/41

Purchased by Paul Frogerais, paul.frogerais@gmail.com #4605415

14. Pour info : Visualisation de la sortie de l'opto-coupleur.
Pour info, voici la visualisation dans une interface Processing de la sortie collecteur de l'opto-coupleur du montage précédent :

A chaque passage à 5V = présence d'un objet dans la fente !

Atelier Arduino : Introduction aux interruptions, les interruptions externes et les interruptions à intervalle régulier. p.15/41

Purchased by Paul Frogerais, paul.frogerais@gmail.com #4605415

15. Comptage d'événements à l'aide d'une interruption externe : le programme

Ce qu'on va faire ici...
• Dans ce programme, nous allons réaliser la même chose qu'un code présenté dans le tuto dédié aux capteurs ON/OFF numériques, mais ici en utilisant une

interruption.

• Nous allons compter le nombre de passages d'un objet dans la fente d'un opto-coupleur. Les situations où l'utilisation d'une interruption est essentielle sont
nombreuses, notamment :

◦ si la fréquence de passage d'un objet dans la fente est élevée (l'interruption permet de ne rater aucun passage)

◦ pour libérer le temps utile du microcontrôleur si le programme est conséquent et utilise d'autres fonctionnalités (communication série entre autre)

Entête déclarative

Variables utiles

• On déclare :
◦ une constante de broche désignant la broche utilisée pour déclencher l'interruption, soit broche 2 (interruption n°0) ou 3 (interruption n°1),
◦ une variable volatile utilisée pour le comptage d'événements,

//--- entête déclarative = déclarer ici variables et constantes globales

const int OPTO=2; // broche de l'optocoupleur

volatile int compt=0; // variable de comptage volatile

Atelier Arduino : Introduction aux interruptions, les interruptions externes et les interruptions à intervalle régulier. p.16/41

Purchased by Paul Frogerais, paul.frogerais@gmail.com #4605415

Fonction setup()

Initialisation série

• On initialise le port série à 115200 bauds, à l'aide de l'instruction begin()

Configuration broche utilisée

• On configure en entrée la broche utilisée pour l'interruption

Configuration interruption utilisée

• On configure l'interruption externe n°0, à l'aide de l'instruction attachInterrupt() en précisant :

◦ le numéro d'interruption (0 = broche 2 ou 1 = broche 3)

◦ le nom (sans les ()) de la fonction à appeler, ici la fonction comptage(),

◦ l'évènement déclencheur, ici le front montant (mot-clé RISING)

Code initial

• On affiche également un simple message d'accueil

//--- la fonction setup() : exécutée au début et 1 seule fois
void setup() {

 Serial.begin(115200); // initialise communication série

 pinMode(OPTO, INPUT); // broche en entrée

 attachInterrupt(0, comptage, RISING); // Attache l'interruption 0 (broche 2) à la fonction
 // RISING : détection sur front montant

 Serial.println("Arduino OK !") ; // message initial

} // fin de la fonction setup()

Atelier Arduino : Introduction aux interruptions, les interruptions externes et les interruptions à intervalle régulier. p.17/41

Purchased by Paul Frogerais, paul.frogerais@gmail.com #4605415

Fonction loop() ()
• Très simple ici : la fonction reste vide. On pourra y mettre le code à exécuter si nécessaire. Mais dans notre cas, tout va se passer dans la fonction comptage()

appelée lors de la survenue de l'interruption :

//--- la fonction loop() : exécutée ensuite en boucle sans fin
void loop() {

 // mettre ici le code à exécuter

} // fin de la fonction loop()

Atelier Arduino : Introduction aux interruptions, les interruptions externes et les interruptions à intervalle régulier. p.18/41

Purchased by Paul Frogerais, paul.frogerais@gmail.com #4605415

Fonction de gestion de l'interruption externe
• La fonction qui va être appelée lors de la survenue de l'interruption s'appelle ici comptage() :

◦ cette fonction ne renvoie rien : elle est donc de type void

◦ elle ne reçoit aucun paramètre : les parenthèses sont laissées vides

◦ à ce niveau, on va tout simplement incrémenter la variable de comptage et afficher simplement un message signalant la survenue de l'interruption ainsi
que la valeur de la variable de comptage.

// fonction appelée lors interruption n°0 (broche 2)
void comptage() {

 compt=compt+1; // incrémente variable comptage

 Serial.print("Interruption 0 (broche 2) a eu lieu.");
 Serial.print("Nombre passages = ");
 Serial.println(compt);

} // fin gestion interruption

Atelier Arduino : Introduction aux interruptions, les interruptions externes et les interruptions à intervalle régulier. p.19/41

Purchased by Paul Frogerais, paul.frogerais@gmail.com #4605415

Fonctionnement du programme
• Une fois la carte Arduino programmée, ouvrir le Terminal Série en réglant sur « newline » et « 115200 »,

• puis passer un objet suffisamment opaque dans la fente de l'opto-coupleur : chaque nouveau passage déclenche l'interruption 1 seule fois,

• ce qui donne … :

Tout fonctionne ? Alors bravo, vous savez utiliser une interruption externe !

Atelier Arduino : Introduction aux interruptions, les interruptions externes et les interruptions à intervalle régulier. p.20/41

Purchased by Paul Frogerais, paul.frogerais@gmail.com #4605415

16. Remarque : utilisation des instructions utilisant des interruptions au sein de la routine d'interruption.

Intro
• Comme on l'a dit dans l'introduction, certaines instructions Arduino

utilisent une interruption pour leur fonctionnement interne,
notamment :
◦ delay(), millis()

◦ tone(), analogWrite()

◦ mais aussi les librairies Serial, Servo, Wire, etc...

• En pratique, il s'avère que l'utilisation de ces fonctions au sein de la
routine des interruptions est susceptible de poser des problèmes et de
provoquer des comportements inattendus !

Mon conseil d'ami :

Eviter en pratique d'utiliser des fonctions utilisant des
interruptions au sein de la routine de gestion des interruptions

(= la fonction appelée par l'interruption)

Euh, mais c'est pourtant ce qu'on vient de faire !?
• « C'est bien, il y en a au moins un qui suit !! » Blague à part, si vous

êtes attentif, vous voyez que dans le code précédent, on utilise les
fonctions Serial.println() et Serial.print() au sein de la fonction
appelée lorsque l'interruption survient... exactement le contraire de ce
que je viens de vous conseiller !

• En fait, si on utilise une instruction Arduino utilisant une interruption
au sein de la fonction de gestion de l'interruption, je n'ai pas dit que çà
ne marchait pas... mais que çà pouvait engendrer des comportements
inattendus, typiquement un blocage du programme !

• C'est exactement ce qui se passe avec le code précédent, si vous faîtes
passer un objet dans la fente de l'opto-coupleur 20 ou 50 fois... : à un
moment, çà va bloquer.

On fait comment alors ?
• La solution consiste à mémoriser l'état d'une variable qui sera

modifiée lors du passage dans l'interruption et à tester au niveau de la
fonction loop() si elle a été modifiée : si c'est le cas, c'est que
l'interruption a eu lieu et on exécute alors les instructions voulues.

Exemple
• Voici le programme précédent modifié de façon à ce que les

instructions de la librairie Serial soient exécutées au sein de la
fonction loop() :

//--- entete déclarative = déclarer ici variables et constantes globales

const int OPTO=2; // broche de l'optocoupleur

volatile int compt=0; // variable de comptage volatile
int compt0=0; // variable pour mémoriser dernière valeur

//--- la fonction setup() : exécutée au début et 1 seule fois
void setup() {

 Serial.begin(115200); // initialise communication série

 pinMode(OPTO, INPUT); // broche en entrée

 attachInterrupt(0, comptage, RISING); // Attache l'interruption 0 (broche 2) à
la fonction
 // RISING : détection sur front montant

 Serial.println("Arduino OK !") ; // message initial

} // fin de la fonction setup()

//--- la fonction loop() : exécutée ensuite en boucle sans fin
void loop() {

 // mettre ici le code à exécuter

 if (compt0!=compt) { // test si la variabla a changé
 Serial.print("Interruption 0 (broche 2) a eu lieu.");
 Serial.print("Nombre passages = ");
 Serial.println(compt);
 compt0=compt; // mémorise nouvelle valeur
 } // fin if

} // fin de la fonction loop()

// fonction appelée lors interruption n°0 (broche 2)
void comptage() {

 compt=compt+1; // incrémente variable comptage

 //Serial.print("Interruption 0 (broche 2) a eu lieu.");
 //Serial.print("Nombre passages = ");
 //Serial.println(compt);

} // fin gestion interruption

Atelier Arduino : Introduction aux interruptions, les interruptions externes et les interruptions à intervalle régulier. p.21/41

Purchased by Paul Frogerais, paul.frogerais@gmail.com #4605415

17. Technique : Remarque sur les capteurs ON/OFF « mécaniques » et les interruptions externes

Intro
• Comme vous l'avez constaté, ici, nous avons utilisé un opto-coupleur

en tant que capteur « numérique » non-mécanique. Mais dans bon
nombre de situations, on pourrait avoir besoin de déclencher une
interruption sur à l'aide d'un capteur mécanique.

• Par exemple, sur un robot, un micro-rupteur sera par exemple appuyé
en cas de choc et déclenchera l'interruption.

Rappel : Comparatif bouton poussoir (« mécanique ») et
capteur numérique ON/OFF (« non-mécanique »)
Un bouton poussoir est un capteur ON/OFF de type « mécanique », ce qui
entraîne un certain nombre de problématiques spécifiques qui ont été
abordées dans l'atelier consacré aux boutons poussoirs :

• nécessité d'un « rappel au plus » (ou « au moins ») de la broche
numérique laissée non connectée,

• nécessité d'une pause « anti-rebond » lors de la lecture de l'état du
bouton poussoir.

Un capteur numérique ON/OFF ne présente pas ces problèmes et a une
transition HAUT/BAS nette et franche :

A gauche : bouton poussoir, à droite : capteur numérique

Le problème
• Le phénomène de rebond est particulièrement pernicieux dans le cas

de l'utilisation d'une interruption :

◦ en effet, le déclenchement de l'interruption est particulièrement
sensible,

◦ et on comprend très bien dès lors, au vu du schéma ci-dessus, que
l'interruption sera déclenchée plusieurs fois lors d'un seul appui
sur le bouton poussoir,

• La solution passera par l'utilisation d'une pause anti-rebond au sein
de la fonction de gestion de l'interruption (et donc perte de réactivité).

Exemple
• Voici le code à utiliser si l'on souhaite déclencher l'interruption lors de

l'appui sur un bouton poussoir sur la broche 2 : remarquer la pause
anti-rebond dans la fonction d'interruption.

//--- entete déclarative = déclarer ici variables et constantes globales

const int BP=2; // broche de l'optocoupleur

volatile int compt=0; // variable de comptage volatile
int compt0=0; // variable pour mémoriser dernière valeur

//--- la fonction setup() : exécutée au début et 1 seule fois
void setup() {

 Serial.begin(115200); // initialise communication série

 pinMode(BP, INPUT); // broche en entrée
 digitalWrite(BP,HIGH); // active le rappel au plus

 attachInterrupt(0, comptage, FALLING); // Attache l'interruption 0 (broche 2) à la fonction
 // RISING : détection sur front montant
 // FALLING : détection sur front descendant

 Serial.println("Arduino OK !") ; // message initial

} // fin de la fonction setup()

//--- la fonction loop() : exécutée ensuite en boucle sans fin
void loop() {

 // mettre ici le code à exécuter

 if (compt0!=compt) { // test si la variabla a changé
 Serial.print("Interruption 0 (broche 2) a eu lieu.");
 Serial.print("Nombre passages = ");
 Serial.println(compt);
 compt0=compt; // mémorise nouvelle valeur
 } // fin if

} // fin de la fonction loop()

// fonction appelée lors interruption n°0 (broche 2)
void comptage() {

 //noInterrupts(); // +/- désactive interruption

 compt=compt+1; // incrémente variable comptage

 //Serial.print("Interruption 0 (broche 2) a eu lieu.");
 //Serial.print("Nombre passages = ");
 //Serial.println(compt);

 delay(500); // pause anti-rebond pour éviter double prise en compte...

 // interrupts(); // +/- réactive interruption

} // fin gestion interruption

A retenir : les capteurs ON/OFF « mécaniques » sont capricieux avec les
interruptions externes : éviter de les utiliser si possible !

Atelier Arduino : Introduction aux interruptions, les interruptions externes et les interruptions à intervalle régulier. p.22/41

Purchased by Paul Frogerais, paul.frogerais@gmail.com #4605415

18. Rappel : Stratégie de programmation : comptage de fréquence

Notion de fréquence
Avant de passer à la suite, prenons le temps de réfléchir à la notion de
fréquence, plus exactement au comptage de la fréquence de survenue d'un
évènement.

Par exemple, imaginons que l'on veuille compter le nombre de tours par
seconde d'un axe en rotation. Pour réaliser cette mesure, on va avoir besoin de
2 choses :

• d'une base temps fixe, autrement dit une durée précise pendant
laquelle on va compter la survenue d'un événement

• d'un « compteur » qui va permettre de comptabiliser tous les
évènements qui sont survenus pendant la durée du comptage.

La fréquence de survenue de l'évènement vaudra :

fréquence = nombres d'évènements / durée de comptage

Comptage des événements
Imaginons que l'on veuille compter le nombre fois où un événement survient
dans un certain délai. Par exemple, si l'on veut compter la vitesse de rotation
d'un moteur ou d'un axe, on pourra compter le nombre fois où l'objet en
rotation est détecté dans un opto-coupleur. A ce stade, on sait faire comme on
l'a vu dans un programme précédent : il suffit d'incrémenter une variable.

Exemple de comptage en rotation par opto-coupleur

Fixer un délai de comptage
Pour fixer un délai de comptage, on va se baser sur l'instruction Arduino
millis() qui renvoie à tout moment le nombre de millisecondes écoulées depuis
la mise sous tension de l'Arduino.

Pour fixer un délai de comptage fixe, on va utiliser 2 variables :

• une pour mémoriser la dernière valeur de millis() prise en compte

• une pour fixer le délai de comptage et permettre d'évaluer si le délai
voulu s'est écoulé.

La stratégie de programmation va consister à :

• mémoriser la valeur de millis()

• tester à chaque passage de loop() si le délai de comptage est écoulé

• si oui :

◦ exécuter les instructions voulues

◦ remettre à zéro les variables de comptages

◦ mémoriser la nouvelle valeur de millis()

• et ainsi de suite...

Atelier Arduino : Introduction aux interruptions, les interruptions externes et les interruptions à intervalle régulier. p.23/41

Purchased by Paul Frogerais, paul.frogerais@gmail.com #4605415

19. Mesurer la vitesse de rotation d'un axe : la mécanique
• Côté électronique, on va utiliser le même montage que vu précédemment (optocoupleur seul connecté sur la broche 2).

• Côté mécanique, on va ici utiliser un simple axe sur lequel on va fixer une languette de bois. On positionne l'axe de façon à ce que la languette de bois passe
dans l'opto-coupleur à chaque rotation, ce qui va permettre de compter la vitesse de rotation de l'axe.

L'axe est fixé de manière à ce qu'une languette de bois fixée sur l'axe

passe dans la fente de l'opto-coupleur...

Chaque rotation entraînera 2 transitions « HAUT-BAS » : le nombre de tours sera nombre transition / 2

Applications possibles

Le comptage du nombre de tours à l'aide d'une interruption externe pourra être utilisé pour toutes sortes de comptage de vitesse en rotation,

notamment pour un anémomètre, un compte tour de vélo, etc...

Atelier Arduino : Introduction aux interruptions, les interruptions externes et les interruptions à intervalle régulier. p.24/41

Purchased by Paul Frogerais, paul.frogerais@gmail.com #4605415

20. Comptage de la fréquence de rotation d'un axe à l'aide d'une interruption externe : le programme

Ce qu'on va faire ici...
• Dans ce programme, nous allons réaliser la même chose qu'un code présenté dans le tuto dédié aux capteurs ON/OFF numériques, mais ici en utilisant une

interruption.

• Nous allons appliquer ce que nous venons de voir en comptant le nombre de tours par 10 secondes d'un axe tournant à vitesse variable. Cette application est
plutôt applicable à des mesures de vitesse peu élevées, de moins de 25 tours/seconde.

Entête déclarative

Variables utiles

• On déclare :
◦ une constante de broche désignant la broche utilisée pour déclencher l'interruption, soit broche 2 (interruption n°0) ou 3 (interruption n°1),
◦ une variable volatile utilisée pour le comptage d'événements, et une variable pour mémoriser la dernière valeur,
◦ une variable pour mémoriser le dernier millis() pris en compte et une variable fixant le délai à prendre en compte en millisecondes.

//--- entete déclarative = déclarer ici variables et constantes globales

const int OPTO=2; // broche de l'optocoupleur

volatile int compt=0; // variable de comptage volatile
int compt0=0; // variable pour mémoriser dernière valeur

long millis0=0; // variable mémorisation valeur millis()
int delai=10000; // délai de comptage en millisecondes

Atelier Arduino : Introduction aux interruptions, les interruptions externes et les interruptions à intervalle régulier. p.25/41

Purchased by Paul Frogerais, paul.frogerais@gmail.com #4605415

Fonction setup()

Initialisation série

• On initialise le port série à 115200 bauds, à l'aide de l'instruction begin()

Configuration broche utilisée

• On configure en entrée la broche utilisée pour l'interruption

Configuration interruption utilisée

• On configure l'interruption externe n°0, à l'aide de l'instruction attachInterrupt() en précisant :

◦ le numéro d'interruption (0 = broche 2 ou 1 = broche 3)

◦ le nom (sans les ()) de la fonction à appeler, ici la fonction comptage(),

◦ l'évènement déclencheur, ici le front montant (mot-clé RISING) ou descendant (mot-clé FALLING)

Code initial

• On mémorise la valeur initiale de millis()

• On affiche également un simple message d'accueil

//--- la fonction setup() : exécutée au début et 1 seule fois
void setup() {

 Serial.begin(115200); // initialise communication série

 pinMode(OPTO, INPUT); // broche en entrée
 //digitalWrite(OPTO, HIGH); // rappel au plus

 attachInterrupt(0, comptage,FALLING); // Attache l'interruption 0 (broche 2) à la fonction
 // RISING : détection sur front montant
 // FALLING : détection sur front descendant

 millis0=millis(); // initialise la valeur de millis

 Serial.println("Arduino OK !") ; // message initial

} // fin de la fonction setup()

Atelier Arduino : Introduction aux interruptions, les interruptions externes et les interruptions à intervalle régulier. p.26/41

Purchased by Paul Frogerais, paul.frogerais@gmail.com #4605415

Fonction loop() ()
• A chaque passage on teste si le délai voulu est écoulé depuis la dernière mémorisation de millis(). Si c'est le cas :

◦ on remet à jour la variable volatile de comptage et la variable de mémorisation de millis()

◦ on affiche le nombre d'impulsion, de tours par seconde et de tour par minute,

• ce qui donne :

//--- la fonction loop() : exécutée ensuite en boucle sans fin
void loop() {

 // mettre ici le code à exécuter

 if (millis()-millis0>delai) { // si le delai s'est écoulé
 compt0=compt; // mémorise comptage actuel
 millis0=millis() ; // réinitialise millis0
 compt=0; // réinitialise comptage

 Serial.print("Delai ecoule.Comptage=");
 Serial.print(compt0);
 Serial.print(" soit ");
 Serial.print(compt0/2);
 Serial.print(" tours en 10 secondes");
 Serial.print(" soit ");
 Serial.print(compt0*3);
 Serial.println(" tours par minute");

 } // fin si delai écoulé

} // fin de la fonction loop()

Atelier Arduino : Introduction aux interruptions, les interruptions externes et les interruptions à intervalle régulier. p.27/41

Purchased by Paul Frogerais, paul.frogerais@gmail.com #4605415

Fonction de gestion de l'interruption externe
• La fonction qui va être appelée lors de la survenue de l'interruption s'appelle ici comptage() :

◦ cette fonction ne renvoie rien : elle est donc de type void

◦ elle ne reçoit aucun paramètre : les parenthèses sont laissées vides

◦ à ce niveau, on va tout simplement incrémenter la variable de comptage.

// fonction appelée lors interruption n°0 (broche 2)
void comptage() {

 compt=compt+1; // incrémente variable comptage

} // fin gestion interruption

Atelier Arduino : Introduction aux interruptions, les interruptions externes et les interruptions à intervalle régulier. p.28/41

Purchased by Paul Frogerais, paul.frogerais@gmail.com #4605415

Fonctionnement du programme
• Une fois la carte Arduino programmée, ouvrir le Terminal Série en réglant sur « newline » et « 115200 »,

• puis passer faire tourner l'axe avec languette de bois passant dans la fente de l'opto-coupleur : chaque nouveau passage déclenche l'interruption 1 seule fois,
et donc 2 fois par tour :

• ce qui donne … :

NOTE :

Sur le même principe, il est possible de mesurer des vitesses rapides, genre moteur en rotation. En fait, il s'avère que l'interruption externe est très
capricieuse et sensible au champ électromagnétique, probablement en raison d'un défaut de découplage (utiliser un bon condensateur)...

Tout çà pour dire qu'il faut savoir que les interruptions externes sont plutôt capricieuses et se déclenchent vite de façon intempestive !!!

Et que çà peut vite devenir prise de tête !

Atelier Arduino : Introduction aux interruptions, les interruptions externes et les interruptions à intervalle régulier. p.29/41

Purchased by Paul Frogerais, paul.frogerais@gmail.com #4605415

21. Technique : utiliser une interruption à intervalle régulier

Intro
• Jusqu'à présent, nous avons vu l'interruption dite « externe »

intéressante pour prendre en compte des événements issus de
capteurs et nécessitant une grande réactivité.

• Un autre type d'interruption est potentiellement très utile en
pratique : l'interruption temporelle, autrement dit une interruption
qui survient à intervalle régulier.

• Une telle interruption permettra de libérer le processeur pendant le
délai entre 2 événements, au lieu de bloquer le programme avec une
pause de type delay() qui bloque le programme.

Rappel : déroulement d'une interruption
• En interne, lorsqu'une interruption survient, le microprocesseur :

◦ met le drapeau à 1

◦ saute à une zone spéciale de la mémoire programme correspondant à la routine
d'interruption (parfois appelée aussi ISR pour Interruption Service Routine) :

▪ à ce niveau, au sein du code, on peut tester les « flags » pour savoir quelle
interruption à été déclenchée

▪ le code voulu est exécuté

◦ le drapeau doit être remis à 0

◦ puis le microcontrôleur quitte la routine d'interruption et reprend l'exécution du
programme là où elle s'était interrompue.

Les timers de l'Arduino
• Comme nous avons déjà eu l'occasion de le dire, l'Arduino dispose

(version UNO) de 3 timers (ou horloges internes) :

◦ le timer 0 utilisé par millis() et analogWrite() sur broche 5 et 6

◦ le timer 1 utilisé par analogWrite() sur broche 9 et 10

◦ le timer 2 utilisé par analogWrite() sur broche 3 et 11

• On voit ici que tous les timers de l'Arduino sont utilisés, mais il va
néanmoins être possible de les utiliser, en perdant cependant la
génération PWM sur certaines broches.

Générer une interruption temporelle avec une librairie
• A la différence des interruptions externes, les interruptions

« temporelles » ne sont pas directement implémentées dans le langage
Arduino. Pour le faire, on va devoir utiliser une librairie externe.
Heureusement pour nous il en existe plusieurs, notamment :

• Librairie TimerOne

◦ Site officiel : http://code.google.com/p/arduino-timerone/

◦ Doc sur le playground ARduino :
http://arduino.cc/playground/Code/Timer1

• Librairie MSTimer2 :

◦ simple à utiliser – configurable en millisecondes

◦ Site officiel :
http://www.pjrc.com/teensy/td_libs_MsTimer2.html

◦ Doc sur le playground Arduino :
http://arduino.cc/playground/Main/MsTimer2

• Librairie FlexTimer2 :

◦ simple aussi, configurable en unités de temps de son choix
simplement

◦ Site Officiel : https://github.com/wimleers/flexitimer2

◦ Doc sur le playground Arduino :
http://www.arduino.cc/playground/Main/FlexiTimer2

Remarque

Je signale ici quelques possibilités : il en existe sûrement d'autres...

Atelier Arduino : Introduction aux interruptions, les interruptions externes et les interruptions à intervalle régulier. p.30/41

Purchased by Paul Frogerais, paul.frogerais@gmail.com #4605415

http://www.arduino.cc/playground/Main/FlexiTimer2
https://github.com/wimleers/flexitimer2
http://arduino.cc/playground/Main/MsTimer2
http://www.pjrc.com/teensy/td_libs_MsTimer2.html
http://arduino.cc/playground/Code/Timer1
http://code.google.com/p/arduino-timerone/

22. Arduino : La librairie MsTimer2

La librairie MSTimer2
• La librairie MSTimer2 permet de générer très simplement une

interruption à intervalle régulier en se basant sur le Timer 2 (on perd
la génération PWM sur les broches 3 et 11)

Télécharger la librairie
• Site officiel : http://www.pjrc.com/teensy/td_libs_MsTimer2.html

Documentation de la librairie
• Doc sur le playground Arduino :

http://arduino.cc/playground/Main/MsTimer2

Installation
• Télécharger l'archive. au format zip ou autre. L'extraire

• Vérifier que le nom du répertoire de la librairie est strictement le même que le
nom du fichier *.h ou *.cpp principal. Corriger au besoin. Ici le nom est
MsTimer2

• Copier/coller le répertoire de la librairie dans le répertoire libraries de votre
répertoire Arduino

• Relancer Arduino et vérifier que la librairie est présente dans le menu Sketch
> ImportLibrary.

Inclusion
• On inclut la librairie dans un programme avec l'instruction #include

(sans ; en fin de ligne +++) suivi du nom de la librairie :
#include <MsTimer2.h> // inclusion de la librairie Timer2

Le constructeur principal
• Le constructeur est implicite (= acessible directement = pas besoin de

le déclarer, comme Serial) se nomme MsTimer2 :

MsTimer2

Fonctions de la librairie
• Les fonctions de la librairie sont au nombre de 3, très simple :

◦ set(duree, fonction) : configure l'interruption où

▪ duree est le délai entre 2 appels de l'interruption en ms

▪ fonction est le nom de la fonction à appeler sans les ()

◦ start() : démarre l'interruption

◦ stop() : désactive l'interruption

• Les fonctions sont accessibles sous la forme C++ suivante :
MsTimer2::fonction()

• à la différence de la forme classique Arduino :
Classe.fonction()

Note :

On retrouve ici les mêmes fonctions qu'un objet dit « Timer » qui existe
dans plusieurs langages de haut niveau, notamment Python.

Encore une fois, le langage Arduino prépare le terrain pour l'apprentissage
de langages plus élaborés.

Atelier Arduino : Introduction aux interruptions, les interruptions externes et les interruptions à intervalle régulier. p.31/41

Purchased by Paul Frogerais, paul.frogerais@gmail.com #4605415

http://arduino.cc/playground/Main/MsTimer2
http://www.pjrc.com/teensy/td_libs_MsTimer2.html

23. Exemple d'utilisation : Faire clignoter une LED en utilisant une interruption temporelle : le montage
• On va reprendre ici le premier montage que vous avez dû réalisé lorsque vous appris Arduino : une simple LED en série avec sa résistance sur la broche 2 :

Atelier Arduino : Introduction aux interruptions, les interruptions externes et les interruptions à intervalle régulier. p.32/41

Purchased by Paul Frogerais, paul.frogerais@gmail.com #4605415

24. Faire clignoter une LED en utilisant une interruption temporelle : le programme

Ce qu'on va faire ici...
• Dans ce programme, nous allons … faire clignoter une LED !! Non, non, ce n'est pas une blague... Bon, vous allez me dire que je vous fais régresser... retour à

la case départ... tout çà pour çà ??? Je vous rassure, je ne me moque pas de vous... !

• Bon, je sais, c'est pas extraordinaire... mais çà va vous montrer comment faire clignoter une LED.... en libérant le micro-contrôleur qui ne sera pas obligé de
passer son temps à exécuter la fonction delay() : on va utiliser ici une interruption « temporelle » ! Aller, c'est parti... rien de bien sorcier, vous allez voir !

Entête déclarative

Inclusion des librairies

• On commence par inclure la librairie MsTimer2 que vous avez dû installer précédemment (enfin, si vous avez fait ce que je vous ai dit... sinon, et bien faîtes-
le !),

Variables utiles

• On déclare :
◦ une constante de broche désignant la broche utilisée pour la LED

//--- inclusion des librairies

#include <MsTimer2.h> // inclusion de la librairie Timer2

//--- entete déclarative = déclarer ici variables et constantes globales

const int LED=2; //declaration constante de broche

Atelier Arduino : Introduction aux interruptions, les interruptions externes et les interruptions à intervalle régulier. p.33/41

Purchased by Paul Frogerais, paul.frogerais@gmail.com #4605415

Fonction setup()

Configuration broche utilisée

• On configure en entrée la broche utilisée pour l'interruption

Configuration interruption utilisée

• On configure l'interruption du Timer 2 :

◦ tout d'abord on initialise l'interruption avec la fonction set() en fixant

▪ le délai entre 2 appels de l'interruption en ms, ici 1000 ms

▪ le nom de la fonction à appeler sans les () : ici interruptTimer2

◦ puis on démarre l'interruption avec la fonction start() : ceci a pour effet de déclencher l'interruption toutes les 1000ms et donc d'appeler la fonction
interruptTimer2 toutes les 1000ms.

//--- la fonction setup() : exécutée au début et 1 seule fois
void setup() {

 pinMode(LED, OUTPUT); //met la broche en sortie

 // initialisation interruption Timer 2
 MsTimer2::set(1000, interruptTimer2); // période 1000ms
 MsTimer2::start(); // active Timer 2

} // fin de la fonction setup()

Atelier Arduino : Introduction aux interruptions, les interruptions externes et les interruptions à intervalle régulier. p.34/41

Purchased by Paul Frogerais, paul.frogerais@gmail.com #4605415

Fonction loop() ()
• On laisse la fonction loop () vide : tout se passe dans la routine de gestion de l'interruption :

//--- la fonction loop() : exécutée ensuite en boucle sans fin
void loop() {

 // laissée vide

} // fin de la fonction loop()

Atelier Arduino : Introduction aux interruptions, les interruptions externes et les interruptions à intervalle régulier. p.35/41

Purchased by Paul Frogerais, paul.frogerais@gmail.com #4605415

Fonction de gestion de l'interruption externe
• La fonction qui va être appelée lors de la survenue de l'interruption s'appelle ici interruptTimer2() (on aurait pu donner tout autre nom...) :

◦ cette fonction ne renvoie rien : elle est donc de type void

◦ elle ne reçoit aucun paramètre : les parenthèses sont laissées vides

◦ à ce niveau, on va :

▪ déclarer une variable static, c'est à dire une variable dont la valeur sera mémorisée entre 2 appel de la fonction. Cette variable, de type booléen (=
binaire = 0 ou 1 = HIGH ou LOW) sera initialisée à HIGH. Malgré les apparences, bien comprendre que cette variable est initialisée à HIGH
SEULEMENT LORS DU PREMIER APPEL DE LA FONCTION. Lors des autres appels, la valeur courante sera utilisée.

▪ ensuite, on met la broche dans l'état fixé par la variable static déclarée,

▪ puis on inverse son état à l'aide d'une notation typique du C : le ! devant la variable booléenne, ce qui la rend HIGH si elle est LOW, LOW si elle est
HIGH, etc... vous avez compris ?

• Si on se résume :

◦ au premier passage :

▪ la variable static est déclarée et mise à HIGH

▪ la broche est donc mise à HIGH : la LED s'allume

▪ puis la variable est mise à LOW

◦ au passage suivant :

▪ la broche est mise dans l'état de la variable static qui a été mémorisée : la LED est donc allumée si était éteinte et inversement

▪ puis la variable static est à nouveau inversée

◦ etc... : au final, la LED clignote toutes les secondes !

// fonction appelée lors interruption Timer2
void interruptTimer2() { // debut de la fonction d'interruption Timer2

 static boolean etatLED=HIGH; // variable statique initialisée à HIGH

 digitalWrite(LED, etatLED);
 etatLED=!etatLED; // inverse la variable

} // fin InterruptTimer2()

Atelier Arduino : Introduction aux interruptions, les interruptions externes et les interruptions à intervalle régulier. p.36/41

Purchased by Paul Frogerais, paul.frogerais@gmail.com #4605415

Fonctionnement du programme
• Une fois la carte Arduino programmée, la LED clignote !

Remarque :

Derrière une apparence assez simple à première vue, ce petit code vous apprend au passage plusieurs choses importantes :

comment utiliser une interruption générée à intervalle régulier, permettant de libérer le temps « utile » pour faire autre chose,

comment mémoriser une variable entre 2 appels au sein d'une fonction à l'aide du qualificateur static,

comment inverser une variable booléenne (ou binaire) en la faisant précéder du sigle !

Sympa non ?

Notez tout çà sur vos tablettes, çà vous servira à l'occasion !

Atelier Arduino : Introduction aux interruptions, les interruptions externes et les interruptions à intervalle régulier. p.37/41

Purchased by Paul Frogerais, paul.frogerais@gmail.com #4605415

25. Les éléments du langage Arduino étudiés dans cet atelier

Structure Variables et constantes Fonctions

• static

• volatile

Interruptions Externes
• attachInterrupt (interruption, fonction, mode)
• detachInterrupt (interruption)

Interruptions
• interrupts ()
• noInterrupts ()

La documentation complète du langage Arduino en français est disponible ici :

http://www.mon-club-elec.fr/pmwiki_reference_arduino/pmwiki.php?n=Main.ReferenceMaxi

Pour aller plus loin avec les interruptions :

Si vous avez des besoins précis plus avancés utilisant les interruptions, vous pourrez utilement consulter la documentation de la librairie native interrupt.h ici :

http://www.nongnu.org/avr-libc/user-manual/group__avr__interrupts.html

Atelier Arduino : Introduction aux interruptions, les interruptions externes et les interruptions à intervalle régulier. p.38/41

Purchased by Paul Frogerais, paul.frogerais@gmail.com #4605415

http://www.nongnu.org/avr-libc/user-manual/group__avr__interrupts.html
http://www.mon-club-elec.fr/pmwiki_reference_arduino/pmwiki.php?n=Main.ReferenceMaxi
http://www.mon-club-elec.fr/pmwiki_reference_arduino/pmwiki.php?n=Main.NoInterrupts
http://www.mon-club-elec.fr/pmwiki_reference_arduino/pmwiki.php?n=Main.Interrupts
http://www.mon-club-elec.fr/pmwiki_reference_arduino/pmwiki.php?n=Main.DetachInterrupt
http://www.mon-club-elec.fr/pmwiki_reference_arduino/pmwiki.php?n=Main.AttachInterrupt
http://www.mon-club-elec.fr/pmwiki_reference_arduino/pmwiki.php?n=Main.Volatile
http://www.mon-club-elec.fr/pmwiki_reference_arduino/pmwiki.php?n=Main.Static

26. A présent, vous devriez être capable :
• d'expliquer le concept d'interruption

• de comprendre comment fonctionne une interruption

• d'utiliser les interruptions externes

• d'utiliser les interruptions à intervalles réguliers

… afin d'être en mesure de créer des programmes plus efficients et optimisant les temps d'utilisation du microprocesseur de l'Arduino.

Atelier Arduino : Introduction aux interruptions, les interruptions externes et les interruptions à intervalle régulier. p.39/41

Purchased by Paul Frogerais, paul.frogerais@gmail.com #4605415

Table des matières
Introduction aux interruptions, les interruptions externes et les interruptions à intervalle régulier.

Intro |
Matériel nécessaire pour les ateliers Arduino |
Les limites de l'écriture « séquentielle » d'un programme |
Principe d'une interruption et déroulement d'un programme utilisant une interruption |
Technique : pour info : la machinerie interne d'une interruption |
Pour info : les interruptions du microcontrôleur ATMega 328 (celui des cartes Arduino UNO) |
Arduino : Les instructions d'activation / désactivation générale des interruptions |
Arduino : Présentation des interruptions externes et des instructions associées |
Arduino : Variables et interruptions : utiliser le qualificateur de variable volatile |
Rappel : Fiche composant : découvrir le transistor et le photo-transistor |
Rappel : Fiche composant : découvrir l'opto-coupleur en fourche |
Pour info : le spectre des ondes électro-magnétiques et de la lumière visible |
Rappel : Utiliser un opto-coupleur en fourche en tant que capteur numérique : le montage |
Pour info : Visualisation de la sortie de l'opto-coupleur. |
Comptage d'événements à l'aide d'une interruption externe : le programme |
Remarque : utilisation des instructions utilisant des interruptions au sein de la routine d'interruption. |
Technique : Remarque sur les capteurs ON/OFF « mécaniques » et les interruptions externes |
Rappel : Stratégie de programmation : comptage de fréquence |
Mesurer la vitesse de rotation d'un axe : la mécanique |
Comptage de la fréquence de rotation d'un axe à l'aide d'une interruption externe : le programme |
Technique : utiliser une interruption à intervalle régulier |
Arduino : La librairie MsTimer2 |
Exemple d'utilisation : Faire clignoter une LED en utilisant une interruption temporelle : le montage |
Comptage de la fréquence de rotation d'un axe à l'aide d'une interruption externe : le programme |
Les éléments du langage Arduino étudiés dans cet atelier |
A présent, vous devriez être capable : |

Atelier Arduino : Introduction aux interruptions, les interruptions externes et les interruptions à intervalle régulier. p.40/41

Purchased by Paul Frogerais, paul.frogerais@gmail.com #4605415

Bravo !
vous avez terminé cet atelier Arduino !

Prêt pour la suite ? Retrouvez de nombreux autres thèmes d'ateliers Arduino ici :
http://www.mon-club-elec.fr/pmwiki_mon_club_elec/pmwiki.php?n=MAIN.ATELIERS

Atelier Arduino : Introduction aux interruptions, les interruptions externes et les interruptions à intervalle régulier. p.41/41

Purchased by Paul Frogerais, paul.frogerais@gmail.com #4605415

http://www.mon-club-elec.fr//pmwiki_mon_club_elec/pmwiki.php?n=MAIN.ATELIERS

	Introduction aux interruptions, les interruptions externes et les interruptions à intervalle régulier.
	1. Intro
	2. Matériel nécessaire pour les ateliers Arduino
	De l'espace de développement Arduino
	Du nécessaire pour réaliser des montages sans soudure
	De quelques composants de base

	3. Les limites de l'écriture « séquentielle » d'un programme
	Le déroulement type d'un programme
	Le problème
	Lecture de l'état d'une broche en entrée
	Temporisation et pause

	La solution : utiliser une interruption

	4. Principe d'une interruption et déroulement d'un programme utilisant une interruption
	Une image pour comprendre
	Principe général d'une interruption
	Déroulement d'un programme utilisant une interruption

	5. Technique : pour info : la machinerie interne d'une interruption
	Le microcontrôleur, vu de l'intérieur...
	Principe du contrôle d'une interruption
	Activation d'une interruption
	Déroulement d'une interruption

	6. Pour info : les interruptions du microcontrôleur ATMega 328 (celui des cartes Arduino UNO)
	Vue d'ensemble
	Classification des interruptions
	Interruptions « invisibles » utilisées par le langage Arduino
	Interruptions accessibles à partir du langage Arduino

	7. Arduino : Les instructions d'activation / désactivation générale des interruptions
	Au démarrage
	Pour info : le principe d'activation des interruptions
	Les instructions d'activation/désactivation des interruptions

	8. Arduino : Présentation des interruptions externes et des instructions associées
	Les interruptions externes: principe
	Les différents événements déclencheurs possibles
	Les broches utilisables
	Les instructions Arduino utilisables

	9. Arduino : Variables et interruptions : utiliser le qualificateur de variable volatile
	Le stockage des variables « classique »
	La solution ? Utiliser le qualificateur de variable « volatile »
	Principe d'utilisation
	Code d'exemple

	10. Rappel : Fiche composant : découvrir le transistor et le photo-transistor
	Description
	Principe de fonctionnement
	Modes de fonctionnement d'un transistor
	Une variante du transistor : le photo-transistor
	Les transistors avec Arduino en pratique

	11. Rappel : Fiche composant : découvrir l'opto-coupleur en fourche
	Description
	Schéma interne
	Principe de fonctionnement
	Le montage type
	Principe d'utilisation sur une plaque d'essai

	12. Pour info : le spectre des ondes électro-magnétiques et de la lumière visible
	13. Rappel : Utiliser un opto-coupleur en fourche en tant que capteur numérique : le montage
	Comprendre comment çà marche

	14. Pour info : Visualisation de la sortie de l'opto-coupleur.
	15. Comptage d'événements à l'aide d'une interruption externe : le programme
	Ce qu'on va faire ici...
	Entête déclarative
	Variables utiles

	Fonction setup()
	Initialisation série
	Configuration broche utilisée
	Configuration interruption utilisée
	Code initial

	Fonction loop() ()
	Fonction de gestion de l'interruption externe
	Fonctionnement du programme

	16. Remarque : utilisation des instructions utilisant des interruptions au sein de la routine d'interruption.
	Intro
	Euh, mais c'est pourtant ce qu'on vient de faire !?
	On fait comment alors ?
	Exemple

	17. Technique : Remarque sur les capteurs ON/OFF « mécaniques » et les interruptions externes
	Intro
	Rappel : Comparatif bouton poussoir (« mécanique ») et capteur numérique ON/OFF (« non-mécanique »)
	Le problème
	Exemple

	18. Rappel : Stratégie de programmation : comptage de fréquence
	Notion de fréquence
	Comptage des événements
	Fixer un délai de comptage

	19. Mesurer la vitesse de rotation d'un axe : la mécanique
	20. Comptage de la fréquence de rotation d'un axe à l'aide d'une interruption externe : le programme
	Ce qu'on va faire ici...
	Entête déclarative
	Variables utiles

	Fonction setup()
	Initialisation série
	Configuration broche utilisée
	Configuration interruption utilisée
	Code initial

	Fonction loop() ()
	Fonction de gestion de l'interruption externe
	Fonctionnement du programme

	21. Technique : utiliser une interruption à intervalle régulier
	Intro
	Rappel : déroulement d'une interruption
	Les timers de l'Arduino
	Générer une interruption temporelle avec une librairie

	22. Arduino : La librairie MsTimer2
	La librairie MSTimer2
	Télécharger la librairie
	Documentation de la librairie
	Installation
	Inclusion
	Le constructeur principal
	Fonctions de la librairie

	23. Exemple d'utilisation : Faire clignoter une LED en utilisant une interruption temporelle : le montage
	24. Faire clignoter une LED en utilisant une interruption temporelle : le programme
	Ce qu'on va faire ici...
	Entête déclarative
	Inclusion des librairies
	Variables utiles

	Fonction setup()
	Configuration broche utilisée
	Configuration interruption utilisée

	Fonction loop() ()
	Fonction de gestion de l'interruption externe
	Fonctionnement du programme

	25. Les éléments du langage Arduino étudiés dans cet atelier
	Interruptions Externes
	Interruptions

	26. A présent, vous devriez être capable :

