Introduction aux interruptions, les interruptions externes et les interruptions a intervalle
régulier.

ARDUINO

Ateliers Arduino

par X. HINAULT
www.mon-club-elec.fr

Ww.moi-club-elec.ir
ff"-xﬁ 48 m

Tous droits réservés — 2012.

Ce document légérement payant est soumis au droit d'auteur et est réservé a I'usage personnel.
Afin d'encourager la production de supports didactiques de qualité, ce document est légérement payant.
La licence d'utilisation est attribuée pour un usage personnel uniquement, dans le cercle familial. Mise en ligne et diffusion non autorisées.
Si vous n'étes pas le détenteur de la licence attribuée pour l'usage de ce document, soyez sympa, merci d'acheter votre exemplaire personnel ici : https://monclubelec.dpdcart.com/
Pour tout probleme li¢ a l'utilisation de ce document, veuillez envoyer une copie ici: support@mon-club-elec.fr
Pour obtenir tout autres types de licence d'utilisation (enseignement, commercial, etc...), veuillez contacter l'auteur ici : support@mon-club-elec.fr

Vous avez constaté une erreur ? une coquille ? N'hésitez pas a nous le signaler a cette adresse : support@mon-club-elec.fr

Truc d'utilisation : visualiser ce document en mode diaporama dans le visionneur PDF. Navigation avec les fleches HAUT / BAS ou la souris.
En mode fenétre, activer le panneau latéral vous facilitera la navigation dans le document. Bonne lecture !
Lancer également le logiciel Arduino et connecter votre carte Arduino afin de pouvoir tester au fur et 8 mesure les codes d'exemples !

Purchased by Paul Frogerais, paul.frogerais@gmail.com #4605415
Atelier Arduino : Introduction aux interruptions, les interruptions externes et les interruptions a intervalle régulier. p.1/41

http://www.mon-club-elec.fr/
mailto:support@mon-club-elec.fr
mailto:support@mon-club-elec.fr
mailto:support@mon-club-elec.fr
https://monclubelec.dpdcart.com/

1. Intro

L'objectif ici est :
* de découvrir le concept d'interruption
* de comprendre comment fonctionne une interruption
+ d'apprendre a utiliser les interruptions externes
« d'apprendre a utiliser les interruptions a intervalles réguliers
... afin d'étre en mesure de créer des programmes plus efficients et optimisant les temps d'utilisation du microprocesseur de 1'Arduino.

Prét ? C'est parti !

Remarque :

Le domaine des interruptions est un peu plus compliqué a maitriser que la programmation « classique », mais en apprenant a utiliser une interruption comme
présenté ici, vous posez du méme coup les bases de la compréhension des « signaux » ou « événements » qui sont trés utilisés par les langages de « haut niveau »
orientés objets tel que Java ou Python, notamment pour la mise en place d'interfaces graphiques coté PC.

Pratique :

Les codes de cet atelier sont disponibles ici :
https://github.com/sensor56/255df4edf7460b622b76d2d4ebd89251

Purchased by Paul Frogerais, paul.frogerais@gmail.com #4605415
Atelier Arduino : Introduction aux interruptions, les interruptions externes et les interruptions a intervalle régulier. p.2/41

https://github.com/sensor56/255df4edf7460b622b76d2d4ebd89251

2. Matériel nécessaire pour les ateliers Arduino

Pour cet atelier, vous aurez besoin de tout ou partie des éléments suivants pour pouvoir réaliser les exemples proposés :

De I'espace de développement Arduino

L'espace de développement Arduino associe :
* un ordinateur sous Windows, Mac Os X ou Gnu/Linux (Ubuntu)

%/m + aveclelogiciel Arduino installé (voir : http://www.arduino.cc/)

* un cable USB
* une carte Arduino UNO ou équivalente.

il

disponible chez : http://shop.snootlab.com/ ou http://www.gotronic.fr

Pour réaliser des montages sans soudure, vous aurez besoin :

* d'une plaque d'essai ou breadboard moyenne (450 points)

* de quelques cébles souples (ou jumpers) male/male

disponible chez : http://www.gotronic.fr/

De quelques composants de base

N N N N e

e e S G G S G G S G G

Pour les ateliers Arduino niveau débutant, vous devrez idéalement disposer

. p) des composants suivants :
a # 3 . des LEDs 5mm Rouges(x20), Vertes (x5) et 3 Jaunes (x5)
. digit a cathode commune rouge 13mm (x1)
s . Résistances (1/4w - 5%) de 270 Ohms (x20), 4,7K Ohms (x1), 1K Ohms (x1)
" \I % ‘ Q . mini bouton-poussoir (x3)
. Opto-fourche (x 1)
Pour vous simplifier la vie, nous avons négocié ce kit pour vous ! . Résistance variable linéaire 10K (x 1)
Vous pouvez commander ce kit complet directement en 1 clic chez notre partenaire ° Photo-résistance 7mm (x 1)
http://www.gotronic.fr/ avec le code express 701710 ‘ Capteur de température LM35DZ (-55/+150°C - 10mV/°C) (x 1)
. Capsule son piézoélectrique (x 1)
GO -I-RO N lC . ULN 2803A (CI amplificateur 8 voies, 500mA/ voie) (x 1)
. LED 5mm multicolore RVB cathode commune (x 1)
ROBOTIQUE ET COMPOSANTS ELECTRONIQUES
Pour plus de détails, voir : http://www.mon-club-elec.fr/pmwiki mon club elec/pmwiki.php?n=MAIN.ATELIERS

Purchased by Paul Frogerais, paul.frogerais@gmail.com #4605415
Atelier Arduino : Introduction aux interruptions, les interruptions externes et les interruptions a intervalle régulier. p.3/41

http://www.mon-club-elec.fr//pmwiki_mon_club_elec/pmwiki.php?n=MAIN.ATELIERS
http://www.gotronic.fr/
http://www.gotronic.fr/
http://www.gotronic.fr/
http://shop.snootlab.com/
http://www.arduino.cc/
http://www.gotronic.fr/art-kit-debutant-atelier-arduino-mon-club-elec-fr-18104.htm

3. Les limites de I'écriture « séquentielle » d'un programme

Le déroulement type d'un programme

Jusqu'a présent vous avez écrit des programmes qui s'exécutaient de
facon dite « séquentielle », autrement dit les instructions étaient
exécutées dans I'ordre chronologique de leur enchainement dans
votre code.

Rappelons le déroulement type d'un programme Arduino :
o lapremiére fonction qui est appelée est la fonction setup() :

= elle n'est exécutée qu'une seule fois et en premier au début du
programme,

= ony place les instructions d'initialisation et de configuration
du programme qui sont exécutées dans 1'ordre.

o ensuite, la fonction loop() :

= est exécutée en boucle, se répétant indéfiniment tant que le
programme n'est pas interrompu.

= ony place les instructions a exécuter de fagon répétée en
boucle. Les instructions sont exécutées dans I'ordre.

Fonction 1 seul passage
setup()
Fonction Boucle

loop() sans fin

Cette structure de base du programme est complétée, comme vous le
savez, au besoin par 'écriture de fonctions séparées qui sont appelées
a la demande soit depuis loop() ou depuis setup().

Purchased by Paul Frogerais, paul.frogerais@gmail.com #4605415
Atelier Arduino : Introduction aux interruptions, les interruptions externes et les interruptions a intervalle régulier. p.4/41

Le probléme

Cette structure de programme, méme si elle performante et satisfaisante dans
la plupart des situations, trouve ses limites dans au moins 2 situations type :

Lecture de I'état d'une broche en entrée

lorsque I'on utilise des dispositif en entrée, notamment un bouton
poussoir, un appui ne va étre détecté uniquement si 1'état de la broche
du bouton poussoir est lue a ce moment précis.

Si le programme est court, cela ne pose pas de probléme, la vitesse du
microprocesseur d'Arduino est telle que 1'état de la broche est lue
plusieurs milliers de fois par secondes.

Mais si le programme s'allonge ou si certaines actions intermédiaires
prennent du temps, I'état de la broche ne peut étre lue que
épisodiquement...

1l serait bien de pouvoir détecter un changement de 1'état de la broche
exactement au moment ou elle survient...

Temporisation et pause

lorsque 1'on souhaite répéter une action a intervalle régulier, on utilise
comme nous l'avons vu une pause, avec l'instruction delay().

lorsque I'on fait clignoter une LED par exemple, on utilise une pause
entre chaque changement d'état de la LED. L'inconvénient de cette
facon de faire est facile a comprendre : si on fait faire quoi que ce soit
au microprocesseur, cela va modifier le délai de clignotement. Et a
l'inverse le microprocesseur va passer la majorité de son temps a ne
rien faire, si ce n'est attendre...

La encore, il serait pratique de pouvoir changer I'état de la LED
uniquement au moment voulu, indépendamment des autres taches
que le microcontroleur doit exécuter...

La solution : utiliser une interruption

La solution a ces 2 types de situation passe parce que 1'on appelle une
interruption. Une interruption, en bref, permet de stopper le
programme a n'importe quel moment lorsqu'un événement
déclencheur survient et a exécuter le code voulu, avant de
reprendre l'exécution normalement.

Dans le premier cas, l'interruption sera déclenchée au changement
d'état de la broche, dans le second cas, lorsque le délai voulu sera
écoulé.

4. Principe d'une interruption et déroulement d'un programme utilisant une interruption

Une image pour comprendre Déroulement d'un programme utilisant une interruption
+ Imaginez quelqu'un qui est en train de lire un livre (ou un atelier Le déroulement global d'un programme utilisant une interruption devient
Arduino...) et soudain le téléphone sonne. Que va faire cette alors :
personne ?

» exécution de la fonction setup()

. . o .
o elle va poser son livre en marquant I'endroit ou elle est arrivée « exécution de la fonction loop() en boucle

© elle va prendre son téléphone et répondre a l'appel * an'importe quel moment, lors de la survenue d'une interruption, la

o puis une fois la conversation terminée, elle va revenir s'asseoir et fonction de gestion de I'interruption est exécutée

. N N 12 . 2
reprendre la lecture de son livre la ou elle s'était arrivée. + puis le programme reprend son cours...

* Une autre image : imaginez un enfant en train de jouer dans sa
chambre a un jeu de construction. Sa mere l'appelle : « A table ! » Que
va-t-il faire ?

Entéte Fichiers d'inclusion
. . . 12 . . Déclarations des constantes
o il valaisser sa construction en 1'état, déclarative

Déclaration des variables globales

o il va venir s'asseoir a la table familiale, va manger...

. .. Configuration initiale
o puis le repas terminé, il va retourner dans sa chambre et Déciaration des varkbles locales
reprendre son jeu la ou 'avait laissé. Fonction Setup| | Configuration des broches
Initialisation des fonctionnalités
Initialisation interruption

4
| <
3 <
Coeur du programme
Fonction Loop = Boucle
instructions exécutées sans fin
en boucle
Si vous avez compris ces 2 images, alors vous avez compris ce qu'est une A 4
interruption ! Si interruption
est déclenchée.
Principe général d'une interruption v
. LR A A ' : : d . Fonction de .
Le principe général d'une interruption est le suivant : gestion des Gestion Interruption '-If”sq”e la gestion de
o le microprocesseur est en train d'exécuter le programme dans Interruptions l'interruption est terminée

I'ordre des instructions

o soudain survient un événement déclencheur de l'interruption : le

microprocesseur va alors interrompre ce qu'il est en train de faire L'avantage d'une interruption est triple :
tout en mémorisant 1'endroit de 'arrét

Le code est exécuté immédiatement si 1'événement déclencheur a lieu !
Le code est exécuté seulement si 1'événement déclencheur a lieu !
Le microcontroleur est libre de faire autre chose entre deux événements !

o il valire et exécuter le code présent dans une fonction spéciale
que I'on appelle « routine de gestion de l'interruption »

o puis, une fois terminé, il va reprendre I'exécution du programme
la ou il s'était arrété.

Purchased by Paul Frogerais, paul.frogerais@gmail.com #4605415
Atelier Arduino : Introduction aux interruptions, les interruptions externes et les interruptions a intervalle régulier. p.5/41

5. Technique : pour info : la machinerie interne d'une interruption

Le microcontréleur, vu de l'intérieur...

* Méme si l'utilisation est interruptions est simplifiée avec Arduino, il
est intéressant de savoir comment ¢a marche au niveau matériel au
sein du microcontroleur.

* Un microcontréleur, en interne, c'est un peu comme un cockpit
d'avion :
o ily apleins d'interrupteurs On/Off qui permettent
d'activer/désactiver des fonctions : les bits d'activation.

o ilya plein de voyants qui signalent tel ou tel événement : les bits
de drapeau.

Principe du contréle d'une interruption
* Le controle d'une interruption va nécessiter typiquement :

o un bit d'activation de l'interruption : c'est 1'équivalent d'un
interrupteur On/Off qui doit étre mis a On...

o un bit de drapeau flag, témoin que l'interruption a eu lieu... : c'est
I'équivalent d'un témoin qui s'allume lorsque l'interruption a eu
lieu...

Activation d'une interruption

* Pour qu'une interruption soit prise en compte, c'est a dire capturée
lorsque I'événement voulu surviendra :

o le bit général d'activation des interruptions doit étre a 1
o le bit d'activation de l'interruption voulue doit étre a 1

Purchased by Paul Frogerais, paul.frogerais@gmail.com #4605415

Déroulement d'une interruption

* Eninterne, lorsqu'une interruption survient, le microprocesseur :

o

o

(2

met le drapeau a 1

saute a une zone spéciale de la mémoire programme
correspondant a la routine d'interruption (parfois appelée aussi
ISR pour Interruption Service Routine) :

= 3 ceniveau, au sein du code, on peut tester les « flags » pour
savoir quelle interruption a été déclenchée

= e code voulu est exécuté
le drapeau doit étre remis a 0

puis le microcontroéleur quitte la routine d'interruption et reprend
I'exécution du programme la ou elle s'était interrompue.

(4] end
rogramme repre?
Leief ot il avait stoppe

L'interruption @ I_ie|:| 1
|e drapeau est mis ¢

X

Coeur du programme

«4

Boucle
sans fin

Ax

Fonction Loop

instructions exécutées
en boucle

Le prog

i
rogramme "saute

e ypion v
au code de I'interrup \

— Si interruption

est déclenchée.
h 4

Gestion Interruption

Fonction de
gestion des
Interruptions

Lorsque la gestion de
l'interruption est terminée

b

£

Une fois le code zxécqu i
remetire le drapeau @

Remarque

Encore une fois, les choses seront beaucoup plus simples avec Arduino, mais
je prends le temps de vous détailler toute cette machinerie sous-jacente pour
que vous ayez conscience de ce qui se passe lorsqu'une interruption survient.

Atelier Arduino : Introduction aux interruptions, les interruptions externes et les interruptions a intervalle régulier. p.6/41

6. Pour info : les interruptions du microcontréleur ATMega 328 (celui des cartes Arduino UNO)

Vue d'ensemble Classification des interruptions

Pas de panique : je donne ces détails juste pour info ! ' * On peut distinguer notamment :

. ., R o les interruptions sur broches E/S
» Elles sont tres nombreuses, jugés plutot :

o les interruptions des Timers (0, 1 et 2)

RESET External Pin, Power-on Reset, Brown-out Reset and Watchdog System Reset . . L .
' o les interruptions de communication série USART
INTO External Interrupt Request 0 . . L.
! o les interruptions de communication SPI et 12C
INTH External Interrupt Request 1 1 d 1
| R . . _— L.
PCINTO Pin Change Interrupt Request 0 Tnterrupt%on e conversion analogique-numérique
PCINTA Pin Change Interrupt Request 1 ° linterruption ' EEprom
PCINT2 Pin Change Interrupt Request 2 Interruptions « invisibles » utilisées par le langage Arduino
WDT ' Wachdog Time-out Infemrupt . Sans que vous le sgchiez fo.rcément, le langage Arduiqo utilise en
- interne certaines interruptions pour son propre fonctionnement.
TIMER2 COMPA Timer/Counter2 Compare Match A . R . .
- * Les fonctions qui utilisent des interruptions sont :
TIMERZ2 COMPB Timer/Counter2 Compare Match B
— © les fonctions millis(), delay() et micros() utilisent le timer o
TIMERZ QVF Timer/Counter2 Overflow . . .
— o lafonction tone() utilise le timer 2
TIMER1 CAPT Timer/Gounter1 Capture Event .] . .
- o lafonction analogWrite() utilise les timer 1 et 2
TIMER1 COMPA Timer/Counter! Compare Match A
T)
TIMER1 COMPB Timer/Coutner1 Compare Match B Les librairi utili 3 oriort) des i .
TIMERT OVE Timer/Gounter! Guerflon es 11 11‘2‘t1)1r1es qui utlllsent (a priori) des interruptions :
' o lalibrairie Seria
TIMERD COMPA Timer/Counter0 Gompare Match A
TIMERO COMPB Timer/Counterd Compare Match B ° la 1Tbrafr1e Se'rvo uFIPSB le. timer 1 |
TIMERD OVF Timer/Counterd Overflow o lalibrairie Wire utiliser l'interruption I2C
SPI, STC SPI Serial Transfer Complete o lalibrairie SPI utilise l'interruption SPI
USART, RX USART Rx Complete RS
USART, UDRE USART, Data Register Empty Interruptions accessibles a partir du langage Arduino
USART, TX | USART, Tx Complete * Cesont ces interruptions les plus intéressantes : celles que I'on va
! : pouvoir utiliser !
ADC ADC Conversion Complete N . . .
» La premiére chose possible avec le langage Arduino : activer ou
EE READY | EEPROM Ready désactiver l'utilisation de I'ensemble des interruptions.
ANALOG COMP | Analog Gomparator + Les interruptions accessibles sont par ailleurs :
™wi | 2-wire Serial Interface o des interruptions dites externes, c'est a dire les interruptions
SPM READY Store Program Memory Ready déclenchées lors d'un changement d'état d'une broche.

o mais aussi des interruptions des timers qui restent accessibles &
I'aide de librairies dédiées... (usage « avancé »)

Purchased by Paul Frogerais, paul.frogerais@gmail.com #4605415
Atelier Arduino : Introduction aux interruptions, les interruptions externes et les interruptions a intervalle régulier. p.7/41

7. Arduino : Les instructions d'activation / désactivation générale des interruptions

Au démarrage

* La premiére chose importante a savoir : les interruptions sont
activées par défaut lorsque 1'on exécute un programme
Arduino et certaines sont utilisées par les fonctions Arduino, comme
nous l'avons précisé précédemment.

Pour info : le principe d'activation des interruptions

* Comme nous 'avons vu précédemment, pour qu'une interruption
voulue soit active, il est nécessaire que son « bit d'activation » soit
égala1

* ...autrement dit, il faut que son « interrupteur d'activation » soit sur
ON, pour reprendre l'image du cockpit d'avion.

* Ceci est vrai pour chaque interruption individuelle... mais il existe
un bit d'activation général des interruptions : c'est ce bit
d'activation qui est mis a 1 ou 0 par les instructions que nous allons
voir ici. Ce bit permet d'activer / désactiver toutes les
interruptions a la fois.

Les instructions d'activation/désactivation des interruptions

* Il est donc possible, comme nous venons de le dire, a tout moment,
d'activer/désactiver toutes les interruptions, ceci grace a 2
instructions du langage Arduino :

o l'instruction nolnterrupts() : désactive toutes les interruptions
o l'instruction interrupts() : active toutes les interruptions

* Asavoir : ces instructions sont en fait une réimplémentation de deux
instructions du langage C natif, qui font la méme chose :

o sei() : activation générale des interruptions
o cli() : désactivation générale des interruptions

* Pour preuve, voici la définition des fonction interrupts() et
nolnterrupts() dans le fichier Arduino.h :

#define interrupts() sei()
#define nolInterrupts() cli()

* Laforme C sei() et cli() est directement utilisable dans un programme

Arduino : il pourra d'ailleurs vous arriver de la rencontrer.

Purchased by Paul Frogerais, paul.frogerais@gmail.com #4605415

ATTENTION

Je vous donne l'information sur ces instructions d'activation / désactivation générale des
interruptions uniquement pour que vous sachiez qu'elles existent.
En pratique, il est déconseillé de désactiver la totalité des
interruptions car on s'expose alors a des comportements inattendus et compliqués &
déboguer :

> des fonctions du langage Arduino utilisant les interruptions (delay(), PWM, etc...) qui ne
fonctionneront plus,

> des librairies utilisant des interruptions qui ne fonctionneront plus, (notamment la librairie
Wire, qui de plus utilise une interruption « bloquante » tant qu'une communication n'est pas
terminée... ou encore la librairie Servo... etc...)

A retenir : en pratique, ne pas utiliser cli() ou noInterrupts() :
ca vous évitera de perdre trop vite vos cheveux !

sauf éventuellement au sein de la routine d'interruption,
afin d'éviter un re-déclenchement intempestif de l'interruption.

Atelier Arduino : Introduction aux interruptions, les interruptions externes et les interruptions a intervalle régulier. p.8/41

8. Arduino : Présentation des interruptions externes et des instructions associées

Les interruptions externes: principe

Le microcontréleur utilisé sur la carte Arduino dispose au niveau
matériel de plusieurs interruptions attachées a des broches : lorsque
I'état de la broche sera modifié, l'interruption sera déclenchée.

C'est ce que I'on appelle une interruption « externe » : ceci est
potentiellement trés pratique pour prendre en compte un événement
dés qu'il survient.

La bonne nouvelle, c'est que le langage Arduino dispose de plusieurs
instructions qui permettent d'utiliser et paramétrer simplement ces
interruptions dites « externes ».

Les différents événements déclencheurs possibles

Comble de la sophistication, I'interruption externe va pouvoir étre
déclenchée lors de la survenue d'une modification précise de 1'état de
la broche et il va logiquement étre possible de choisir la modification
qui devra déclencher l'interruption.

Une broche pourra se trouver dans 4 états différents :
o 2 états fondamental :

= soit niveau HAUT (ou HIGH)

= soit niveau BAS (ou LOW)
o et 2 transitions :

= goit front descendant (ou « FALLING »)

= soit front montant (ou « RISING »)

Front Descendant :

"FALLING" HAUT Eront Montant :

\ RICING.)
/ R v
I 1
BAS | N :
Arduino T i Circuit :
i extérieur" i
o |
L Rt S et A SO]

Purchased by Paul Frogerais, paul.frogerais@gmail.com #4605415
Atelier Arduino : Introduction aux interruptions, les interruptions externes et les interruptions a intervalle régulier. p.9/41

Les broches utilisables

La plupart des cartes Arduino ont deux interruptions externes :
o interruption externe n°o sur la broche numérique 2
o et interruption externe n°1 sur la broche numérique 3.

La carte Arduino Mega en posséde quatre de plus : interruption
externe n°2 sur la broche 21, n°3 sur la broche 20, n°4 sur la broche 19
et n°5 sur la broche 18.

Les instructions Arduino utilisables

Les instructions de configuration des interruptions externes sont les
suivantes :

Tout d'abord, pour configurer l'interruption externe, l'instruction
attachInterrupt (interruption, fonction, mode) ot :
o interruption : le numéro de l'interruption (type int) :

= 0 pour la broche 2

= 1pour la broche 3

o fonction: la fonction a appeler quand l'interruption survient; la
fonction ne doit recevoir aucun parametres et ne renvoie rien.
Cette fonction est également appelée une routine de service
d'interruption (ou ISR).

o mode : définit la facon dont l'interruption externe doit étre prise
en compte. Quatre constantes ont des valeurs prédéfinies
valables :

= LOW : pour déclenchement de l'interruption lorsque la broche
est au niveau BAS

= CHANGE : pour déclenchement de l'interruption lorsque la
broche change d'état BAS/HAUT, quelque soit le sens

= RISING : pour déclenchement de l'interruption lorsque la
broche passe de I'état BAS vers HAUT (front montant)

= FALLING : pour déclenchement de l'interruption lorsque la
broche passe de 1'état HAUT vers 1'état BAS (front
descendant)

Pour désactiver l'interruption externe, l'instruction
detachInterrupt(interruption) ou :

o interruption : le numéro de l'interruption (type int)

9. Arduino : Variables et interruptions : utiliser le qualificateur de variable volatile

Le stockage des variables « classique »

» Typiquement, lorsque l'on utilise une variable au sein d'un
programme Arduino celle-ci est stockée dans un registre, espace de
mémoire temporaire.

» Dans le cas de I'exécution d'un code classique, cela ne pose aucun
probléme. Par contre, dés lors que 'on va utiliser les interruptions,
dans certaines situations, les variables « classiques » peuvent ne plus
étre accessibles a partir du code l'interruption, ce qui pose probléme.

La solution ? Utiliser le qualificateur de variable « volatile »

» Il est possible avec le langage Arduino d'utiliser ce que 1'on appelle un
« qualificateur de variable », qui va indiquer un comportement
particulier d'une variable donnée.

* Vous connaissez déja le qualificateur de variable const qui transforme
une variable en une constante, c'est a dire que sa valeur ne sera pas
changée au cours du programme (voir l'atelier consacré aux
variables).

« Dans notre cas, nous allons pouvoir utiliser le qualificateur de
variable volatile

+ Comme son nom ne l'indique pas, ce qualificateur va indiquer a
Arduino (au compilateur pour étre précis), de stocker la variable en
RAM de facon a ce qu'elle soit accessible en tout point du code,
notamment aussi bien dans la routine d'interruption que dans les
fonctions loop() et setup()

Principe d'utilisation
volatile int state = LOW; // déclaration variable stockée en RAM

Code d'exemple

// inverse 1'état de la LED quand une interruption par changement d'état
d'une broche survient

int pin = 13;
volatile int state = LOW; // déclaration variable volatile = stockée en
RAM

void setup()

{

pinMode (pin, OUTPUT);

attachInterrupt(®, blink, CHANGE); // Attache 1'interruption a la
fonction blink

}
void loop()
{

digitalWrite(pin, state); // met la broche dans l1'état voulu
}

void blink() // la fonction appelée lorsque l'interruption survient

{

state = !state; // inverse 1'état de la variable

}

Voila, a ce stade, vous étes parés pour passer a l'action avec les interruptions externes, ce que nous allons faire a présent !

Purchased by Paul Frogerais, paul.frogerais@gmail.com #4605415

Atelier Arduino : Introduction aux interruptions, les interruptions externes et les interruptions a intervalle régulier. p.10/41

10. Rappel : Fiche composant : découvrir le transistor et le photo-transistor

Description

En électronique, le transistor est un composant semi-conducteur (il en existe 2
types dits PNP ou NPN) dans un petit boitier qui dispose de 3 broches :

* labase B qui recoit une intensité de déclenchement Ib
* le collecteur C qui laisse entrer une intensité Ic porportionnelle a Ib
* 1'émetteur E qui laisse sortir une intensité valant Ie=Ic+Ib

A savoir :
Le transistor est un composant essentiel, qui date des années 40, et qui a révolutionné
I'électronique et permis l'apparition de 1'électronique numérique et des ordinateurs. Les
processeurs des ordinateurs actuels possédent des millions de transistors miniaturisés !!

Le micro-contréleur de votre carte Arduino lui-méme intégre environ 500 000
transistors !

Principe de fonctionnement

Le principe fondamental de fonctionnement d'un transistor est le suivant : une
petite intensité circulant sur la broche de la base va provoquer la circulation
d'une intensité importante proportionnelle entre le collecteur et 1'émetteur.

+
c @ Ic-Isx Gain
B

—

Is
Ed L+l Te=Ts+Ic

Le Transistor NPN

Pour faire simple, on peut dire qu'un transistor est un « multiplicateur »
d'intensité : il multiplie l'intensité de la base et I'intensité résultante circule
entre le collecteur et I'émetteur. Le coefficient multiplicateur est appelé gain.

Purchased by Paul Frogerais, paul.frogerais@gmail.com #4605415

Modes de fonctionnement d'un transistor

Le transistor est un composant qui peut étre utilisé aussi bien en mode
analogique que « numérique » :
* en mode analogique, la variation d'intensité sur la base se répercute immédiatement
en variation d'intensité du collecteur. C'est ce principe qui est a la base des

amplificateurs audio et autres appareils de radio (dont lui vient d'ailleurs le nom de
transistor).

. en mode « numérique » ou « ON/OFF » appelé également mode saturé : des
qu'une intensité est présente sur la base, le courant de collecteur est d'emblée maximal.
L'absence de courant sur la base ne laisse passer aucun courant de collecteur. C'est une
sorte d'interrupteur a commande électrique. C'est ce mode de fonctionnement qui est a
la base de tous les circuits logiques et numériques.

Une variante du transistor : le photo-transistor

Dans ce composant, la broche de la base est remplacée par une zone sensible a
la lumiére infra-rouge. Le photo-transistor n'a donc que 2 broches :

C

E o=

Le principe de fonctionnement est le suivant : une intensité lumineuse
présente sur la zone photo-sensible va provoquer la circulation d'un courant
de collecteur qui sera proportionnel a I'intensité lumineuse recue.

Le photo-transistor pourra étre utilisé soit en mode analogique ou saturé.

Les transistors avec Arduino en pratique

Afin de ne pas compliquer inutilement les montages, en pratique, on
n'utilisera quasiment pas les transistors « bruts » avec Arduino, mais pluté6t
des circuits les utilisant tels que le circuit intégré ULN 2803 qui integre 8
étages d'amplification ON/OFF et ne nécessite aucun composant externe.

Par contre, on utilisera le photo-transistor, utilisé au sein des opto-coupleurs,
comme nous allons le voir par la suite.

Remarque : 1'étude des transistors et de leur utilisation est un domaine
passionnant et qui peut faire 1'objet de livres entiers. Ici, nous en parlons
uniquement pour introduire le photo-transistor. Si vous voulez approfondir,

voir notamment : http://fr.wikipedia.org/wiki/Transistor

Atelier Arduino : Introduction aux interruptions, les interruptions externes et les interruptions a intervalle régulier. p.11/41

http://fr.wikipedia.org/wiki/Transistor

11. Rappel : Fiche composant : découvrir I'opto-coupleur en fourche

Description Le montage type
L'opto-coupleur en fourche est un composant qui associe en fait 2 composants L'utilisation de ce composant nécessite en fait la réalisation de 2 circuits :
différents qui §oni[) posllltlonnes facg a face dans un méme boitier (2 broches par « tout d'abord, le circuit de la LED infra-rouge, qui s'utilise comme une
composant soit 4 broches en tout) : LED standard. On pourra donc se contenter de mettre une résistance
* d'une part une photo-diode ou LED infra-rouge qui fonctionne comme en série avec LED pour qu'elle soit allumée. Comme vu précédemment, si
une LED classique et émet une lumieére invisible dite infra-rouge, on désire une intensité de 13mA dans la LED, on utilisera, d'apres la loi

, . . , d'ohm, ésist de R=U/I = 3,5V/0,013A= 270 Ohms.
» d'autre part un photo-transistor infra-rouge utilisé ici pour détecter la ofm, tne resistatice de /1=3,5V/0,013 7 ms

présence de la lumiére infra-rouge (patte courte = Emetteur). * lecircuit du photo-transistor qui sera ici utilisé en mode saturé,
autrement dit :
o sipas d'objet dans la fente = lumiere IR présente, alors la tension
du collecteur vaudra oV

o siobjet présent dans la fente = pas de lumiére IR, alors la tension
du collecteur vaudra 5V

Schéma interne o pour obtenir ce résultat, on se contente d'utiliser une résistance de
Le schéma théorique de I'optocoupleur est le suivant : quelques milliers d'Ohms entre le collecteur et le +5V. En
pratique, on utilisera 4,7KOhms avec un LTH301-7.
A
S C +5V
b — o +5V
e K
— E A
1 e
RN
Opto-coupleur fourche K |
(Ex: LTH301-7) I B E
oV =

* Onretrouve d'une part la LED infra-rouge signalée par les lettres A et
K sur le boitier de I'opto-coupleur correspondant a I'anode (A = +) et P
pto- coupleur fourche
la cathode (K = - = patte courte) (Ex: LTH301-7) _L
oV —

* Onretrouve d'autre part le photo-transistor signalé par les lettres C et

E sur le boitier de 1'opto-coupleur correspondant au collecteur (C = +) Principe d'utilisation sur une plaque d'essai

et a I'émetteur (E = - = patte courte). , e . .
L'opto-coupleur s'utilise simplement, a cheval sur le rail central :

Principe de fonctionnement —_—

* Lorsque la LED infra-rouge est allumée, la base du photo-transistor
est éclairée et le photo-transistor laisse passer le courant.

» Lorsque la LED infra-rouge est éteinte, ou si un objet se trouve dans la
fente, 1a base du photo-transistor ne laisse passer aucun courant.

Purchased by Paul Frogerais, paul.frogerais@gmail.com #4605415
Atelier Arduino : Introduction aux interruptions, les interruptions externes et les interruptions a intervalle régulier. p.12/41

12. Pour info : le spectre des ondes électro-magnétiques et de la lumiére visible

0.01lnm

1nm 100nm

700nm

http://fr.wikipedia.org/wiki/Fichier:Spectre.sv;

La lumiere, tout comme les ondes radio ou les micro-ondes sont des ondes dites « électro-magnétiques »

Photons de haute énergie Photons de basse énergie

Fréquence « (Hz)
10°4 10 10 10'® 10" 10™ 10" 10" 10° 10! 104 10 10
! I
Rayons gamma Infrarouge ‘| Micro-ondes ,| Ondes radio I‘ Ondes radio longues

|
| Fm | iy
|

10" [

Longueur d’onde . A (M)

Spectre ViSiblg

Violet, Bleu Rouge

400 450 500 550 600 650 700
Longueur d’onde nm
source : http://www.lampexpress.fr/images/ampoules-fiche-technique/spectre-lumiere.j

La lumiére visible ne représente qu'une toute petite partie de 'ensemble des ondes électro-magnétiques.
La lumiere infra-rouge, a laquelle est sensible le photo-transistor, est une lumiere invisible a I'oeil nu, de méme que la lumiére ultra-violette.

Purchased by Paul Frogerais, paul.frogerais@gmail.com #4605415
Atelier Arduino : Introduction aux interruptions, les interruptions externes et les interruptions a intervalle régulier. p.13/41

http://www.lampexpress.fr/images/ampoules-fiche-technique/spectre-lumiere.jpg
http://fr.wikipedia.org/wiki/Fichier:Spectre.svg

13. Rappel : Utiliser un opto-coupleur en fourche en tant que capteur numérique : le montage

On reprend ici simplement le montage type de 1'opto-coupleur vu
précédemment. On connecte 1'émetteur sur une broche analogique de la carte

Arduino :
+5V 4)
i Carte
Arduino R -
A sk
&
C J-L [Reset MISO 45V
k18 m+3v3 w MOSI/PWM i
K Carte |5V SS/IPWM [seOodomoho
, E Arduino i P al loowopofo
ol aanoeces
ov= el I
A0 PWM g Opto-fourche B
Opto- coupleur fourche * BA1 - LTH01ET IF'l'_l mlislm|
: A2z INT1/ PWM MRS I T e
(Ex: LTH301-7) 1 BAZ 5 B UDEDIE%EID[]D
N mA S INTO g ScegeOoopo
= YV I P 4T | DIIL ooooofpa
EA5 e SR ooooog&n
Comprendre comment ¢a marche = # i
* Lorsqu'un objet est présent dans la fente, aucune lumiere n'est &
détectée par le photo-transistor et donc aucune intensité ne circule 45V
dans le collecteur. La tension de la résistance en série vaut donc U = R
xI=oV BCISISE ASE ISh s
* Lorsqu'aucun objet n'est présent dans la fente, la lumiere est détectée SMNoosohodo
par le photo-transistor et donc le courant circule dans le collecteur. La ol loooobhoho
tension de la résistance en série vautdoncU=RxI1~5V oWUnoooohohfo
OewOOooopopa
e e MOOpO
Truc de repérage : Opto-fourche [A+ TR &
Pour la LED, la broche courte est la cathode et 1a longue 1'anode A Sl LSO
’ .) ’ OO 0OEOO0Opo
pour le photo-transistor, la broche courte est 1'émetteur et la longue le Oood omo
collecteur. =l 1O O[O
(| ill_' oodoofpa
OO0 000 O

Truc pratique : pour vérifier que la LED s'allume bien, enlever 1'opto-
coupleur et remplacez-le par une LED normale. Si elle s'allume, tout est bien —
connecté. Ensuite, remettre 1'opto-coupleur.

Purchased by Paul Frogerais, paul.frogerais@gmail.com #4605415
Atelier Arduino : Introduction aux interruptions, les interruptions externes et les interruptions a intervalle régulier. p.14/41

14. Pour info : Visualisation de la sortie de I'opto-coupleur.

Pour info, voici la visualisation dans une interface Processing de la sortie collecteur de I'opto-coupleur du montage précédent :

oscillo_graph_numerique_usb_v2

| (204)

A chaque passage a 5V = présence d'un objet dans la fente !

Purchased by Paul Frogerais, paul.frogerais@gmail.com #4605415
Atelier Arduino : Introduction aux interruptions, les interruptions externes et les interruptions a intervalle régulier. p.15/41

15. Comptage d'événements a I'aide d'une interruption externe : le programme
Ce qu'on va faire ici...

Dans ce programme, nous allons réaliser la méme chose qu'un code présenté dans le tuto dédié aux capteurs ON/OFF numériques, mais ici en utilisant une
interruption.
Nous allons compter le nombre de passages d'un objet dans la fente d'un opto-coupleur. Les situations ou 'utilisation d'une interruption est essentielle sont

nombreuses, notamment :

o

si la fréquence de passage d'un objet dans la fente est élevée (I'interruption permet de ne rater aucun passage)
o

pour libérer le temps utile du microcontréleur si le programme est conséquent et utilise d'autres fonctionnalités (communication série entre autre)

Entéte déclarative
Variables utiles

¢ On déclare :
(@]

une constante de broche désignant la broche utilisée pour déclencher l'interruption, soit broche 2 (interruption n°0) ou 3 (interruption n°1),
O

une variable volatile utilisée pour le comptage d'événements,

/1---

entéte déclarative = déclarer ici variables et constantes globales

const int OPTO=2; // broche de 1'optocoupleur

volatile int compt=0; // variable de comptage volatile

Purchased by Paul Frogerais, paul.frogerais@gmail.com #4605415

Atelier Arduino : Introduction aux interruptions, les interruptions externes et les interruptions a intervalle régulier. p.16/41

Fonction setup()
Initialisation série
* On initialise le port série a 115200 bauds, a I'aide de l'instruction begin()

Configuration broche utilisée
* On configure en entrée la broche utilisée pour l'interruption

Configuration interruption utilisée
* On configure l'interruption externe n°o, a 1'aide de l'instruction attachInterrupt() en précisant :
o le numéro d'interruption (0 = broche 2 ou 1 = broche 3)
o lenom (sans les ()) de la fonction a appeler, ici la fonction comptage(),
o 1'événement déclencheur, ici le front montant (mot-clé RISING)

Code initial
* On affiche également un simple message d'accueil

//--- la fonction setup() : exécutée au début et 1 seule fois
void setup() {

Serial.begin(115200); // initialise communication série
pinMode (OPTO, INPUT); // broche en entrée

attachInterrupt(0, comptage, RISING); // Attache l'interruption 0 (broche 2) a la fonction
// RISING : détection sur front montant

Serial.println("Arduino OK !") ; // message initial

} // fin de la fonction setup()

Purchased by Paul Frogerais, paul.frogerais@gmail.com #4605415
Atelier Arduino : Introduction aux interruptions, les interruptions externes et les interruptions a intervalle régulier. p.17/41

Fonction loop() ()

» Tres simple ici : la fonction reste vide. On pourra y mettre le code a exécuter si nécessaire. Mais dans notre cas, tout va se passer dans la fonction comptage()
appelée lors de la survenue de l'interruption :

//--- la fonction loop() : exécutée ensuite en boucle sans fin
void loop() {

// mettre ici le code a exécuter

} // fin de la fonction loop()

Purchased by Paul Frogerais, paul.frogerais@gmail.com #4605415
Atelier Arduino : Introduction aux interruptions, les interruptions externes et les interruptions a intervalle régulier. p.18/41

Fonction de gestion de l'interruption externe
* Lafonction qui va étre appelée lors de la survenue de l'interruption s'appelle ici comptage() :
o cette fonction ne renvoie rien : elle est donc de type void

o elle ne regoit aucun parametre : les parentheses sont laissées vides

© ace niveau, on va tout simplement incrémenter la variable de comptage et afficher simplement un message signalant la survenue de l'interruption ainsi

que la valeur de la variable de comptage.

// fonction appelée lors interruption n°0 (broche 2)
void comptage() {

compt=compt+l; // incrémente variable comptage
Serial.print("Interruption 0 (broche 2) a eu lieu.");
Serial.print("Nombre passages = ");
Serial.println(compt);

} // fin gestion interruption

Purchased by Paul Frogerais, paul.frogerais@gmail.com #4605415
Atelier Arduino : Introduction aux interruptions, les interruptions externes et les interruptions a intervalle régulier. p.19/41

Fonctionnement du programme
* Une fois la carte Arduino programmeée, ouvrir le Terminal Série en réglant sur « newline » et « 115200 »,
* puis passer un objet suffisamment opaque dans la fente de 1'opto-coupleur : chaque nouveau passage déclenche l'interruption 1 seule fois,
* cequidonne...:

?EEB fdev/ttyACMO o & X
“] Send
Arduino OK !

Interruption @ [(broche 2] a eu lieu.Mombre passages = 1
Interruption @ (broche 21 a eu lieu.Mombre passages = 2
Interruption @ (broche 2) a eu lieu.Mombre passages = 3
Interruption @ [(broche 2) a eu lieu.Mombhre passages = 4
Interruption @ (broche 21 a eu lieu.Mombre passages = 5
Interruption @ (broche 2} a eu lieu.Mombre passages = &
Interruption O [(broche 2) a eu lieu.Mombhre passages = 7
Interruption @ (broche 21 a eu lieu.Mombre passages = 8
Interruption @ (broche 21 a eu lieu.Mombre passages = 9
Interruption O [(broche 2) a eu lieu.Mombhre passages = 10
Interruption @ (broche 2) a eu lieu.Mombre passages = 11
Interruption @ (broche 21 a eu lieu.Mombre passages = 12
Interruption @ (broche 2) a eu lieu.MNombre passages = 13
Interruption @ [(broche 2) a eu lieu.Mombre passages = 14
Interruption @ (broche 21 a eu lieu.Mombre passages = 15
£ autoscroll [Newline v | [115200 baud | »

'
Bt

Tout fonctionne ? Alors bravo, vous savez utiliser une interruption externe !

Purchased by Paul Frogerais, paul.frogerais@gmail.com #4605415
Atelier Arduino : Introduction aux interruptions, les interruptions externes et les interruptions a intervalle régulier. p.20/41

16. Remarque : utilisation des instructions utilisant des interruptions au sein de la routine d'interruption.

Intro Exemple
+ Comme on l'a dit dans l'introduction, certaines instructions Arduino * Voici le programme précédent modifié de facon a ce que les
utilisent une interruption pour leur fonctionnement interne, instructions de la librairie Serial soient exécutées au sein de la
notamment : fonction loop() :
o delay(), millis() //--- entete déclarative = déclarer ici variables et constantes globales
o tone(), analogWrite() const int OPT0=2; // broche de 1'optocoupleur

mais aussi les librairies Serial, Servo, Wire, etc... G Ut GED 47 veRERle 68 e Geleslle

* En pratique, il s'avére que I'utilisation de ces fonctions au sein de la int compt@=0; // variable pour mémoriser derniére valeur
routine des interruptions est susceptible de poser des problémes et de 7 T e Sem) - eeaee s A e T senle Teis
provoquer des comportements inattendus ! void setup() {
Serial.begin(115200); // initialise communication série
Mon conseil d'ami : pinMode(OPTO, INPUT); // broche en entrée
. Ev1te.r & pratlgue d utlhse? des fonct}ons utl!lsant des. attachInterrupt(0, comptage, RISING); // Attache l'interruption 0 (broche 2) a
interruptions au sein de la routine de gestion des interruptions la fonction

// RISING : détection sur front montant

(= la fonction appelée par l'interruption)

Serial.println("Arduino OK !") ; // message initial

} // fin de la fonction setup()
Euh, mais c'est pourtant ce qu'on vient de faire !?

* «C'est bien, il y en a au moins un qui suit !! » Blague a part, si vous
étes attentif, vous voyez que dans le code précédent, on utilise les

//--- la fonction loop() : exécutée ensuite en boucle sans fin
void loop() {

fonctions Serial.println() et Serial.print() au sein de la fonction // mettre ici le code & exeécuter
. g . . .

appe;lee.lorsque 1 interruption survient... exactement le contraire de ce o e I B B e = e s

que je viens de vous conseiller ! Serial.print("Interruption © (broche 2) a eu lieu.");
. Serial.print("Nombre passages = ");

* En fait, si on utilise une instruction Arduino utilisant une interruption Serial.println(compt);

au sein de la fonction de gestion de l'interruption, je n'ai pas dit que ¢a) 53m$’ifg=§?mpt: // mémorise nouvelle valeur

ne marchait pas... mais que ¢ca pouvait engendrer des comportements

inattendus, typiquement un blocage du programme ! } // fin de la fonction loop()

» C'est exactement ce qui se passe avec le code précédent, si vous faites
passer un objet dans la fente de 1'opto-coupleur 20 ou 50 fois... : a un
moment, ¢a va bloquer.

On fait comment alors ?

// fonction appelée lors interruption n°@ (broche 2)
void comptage() {

compt=compt+1l; // incrémente variable comptage

//Serial.print("Interruption 0 (broche 2) a eu lieu.");

* Lasolution consiste a mémoriser 1'état d'une variable qui sera //Serial.print("Nombre passages = ");
modifiée lors du passage dans l'interruption et a tester au niveau de la //Serial.println(compt);
fonction loop() si elle a été modifiée : si c'est le cas, c'est que b A e e

I'interruption a eu lieu et on exécute alors les instructions voulues.

Purchased by Paul Frogerais, paul.frogerais@gmail.com #4605415
Atelier Arduino : Introduction aux interruptions, les interruptions externes et les interruptions a intervalle régulier. p.21/41

17. Technique : Remarque sur les capteurs ON/OFF « mécaniques » et les interruptions externes

Intro Exemple
* Comme vous l'avez constaté, ici, nous avons utilisé un opto-coupleur * Voici le code a utiliser si 'on souhaite déclencher I'interruption lors de
en tant que capteur « numérique » non-mécanique. Mais dans bon I'appui sur un bouton poussoir sur la broche 2 : remarquer la pause
nombre de situations, on pourrait avoir besoin de déclencher une anti-rebond dans la fonction d'interruption.
interruption sur al'aide d'un capteur mécanique. //--- entete déclarative = déclarer ici variables et constantes globales
» Par exemple, sur un robot, un micro-rupteur sera par exemple appuyé const int BP=2; // broche de 1'optocoupleur
en cas de choc et déclenchera l'interruption. volatile int compt=0; // variable de comptage volatile
[Q‘ I 'f . . . int compt@=0; // variable pour mémoriser derniére valeur
appe * con!p_aratl bOUton pousso".,(« rn_ecanlque ») et //--- la fonction setup() : exécutée au début et 1 seule fois
capteur numérique ON/OFF (« non-mécanique ») void setup() {
Un bouton pOllSSOiI‘ est un capteur ON/OFF de type « mécanique », ce qlll Serial.begin(115200); // initialise communication série
entraine un certain nombre de problématiques spécifiques qui ont été pinMode(BP, INPUT); // broche en entrée

2 . 7 . igitalWrit 5 t 1 1 1
abordées dans I'atelier consacré aux boutons poussoirs : LR LAy 0 2Etls e URRREL cLl phe

, ST . attachInterrupt(@, comptage, FALLING); // Attache l'interruption O (broche 2) a la fonction
* nécessité d'un « rappel au plus » (ou « au moins ») de la broche // RISING : détection sur front montant

numérique laiSSée non Connectée, // FALLING : détection sur front descendant
Serial.println("Arduino OK !") ; // message initial

* nécessité d'une pause « anti-rebond » lors de la lecture de I'état du
bouton poussoir.

Un cgp.teur numérique ON/OFF ne présente pas ces problémes et a une J/--- la fonction loop() : exécutée ensuite en boucle sans fin
transition HAUT/BAS nette et franche : void loop() {

// mettre ici le code a exécuter

-

// fin de la fonction setup()

if (compt@!=compt) { // test si la variabla a changé
Serial.print("Interruption O (broche 2) a eu lieu.");
Serial.print("Nombre passages = ");
Serial.println(compt);
comptO=compt; // mémorise nouvelle valeur

} /7 fin if

} // fin de la fonction loop()

// fonction appelée lors interruption n°@ (broche 2)
o s . s e void comptage() {
A gauche : bouton poussoir, a droite : capteur numérique

Le probléme

* Le phénomene de rebond est particulierement pernicieux dans le cas el G e O (s 2) o)) e

de l'utilisation d'une interruption : //Serial.print("Nombre passages = ");
//Serial.println(compt);

//noInterrupts(); // +/- désactive interruption

compt=compt+l; // incrémente variable comptage

o en effet, le déclenchement de l'interruption est particuliérement

R delay(500); // pause anti-rebond pour éviter double prise en compte...
sensible,

R . . , . // interrupts(); // +/- réactive interruption
o et on comprend tres bien des lors, au vu du schéma ci-dessus, que
I'interruption sera déclenchée plusieurs fois lors d'un seul appui

sur le bouton poussoir,

} // fin gestion interruption

A retenir : les capteurs ON/OFF « mécaniques » sont capricieux avec les

* Lasolution passera par l'utilisation d'une pause anti-rebond au sein . : At 1e . T T
interruptions externes : éviter de les utiliser si possible !

de la fonction de gestion de I'interruption (et donc perte de réactivité).

Purchased by Paul Frogerais, paul.frogerais@gmail.com #4605415
Atelier Arduino : Introduction aux interruptions, les interruptions externes et les interruptions a intervalle régulier. p.22/41

18. Rappel : Stratégie de programmation : comptage de fréequence

Notion de fréquence Comptage des événements

Avant de passer a la suite, prenons le temps de réfléchir a la notion de Imaginons que I'on veuille compter le nombre fois ott un événement survient
fréquence, plus exactement au comptage de la fréquence de survenue d'un dans un certain délai. Par exemple, si l'on veut compter la vitesse de rotation
évenement. d'un moteur ou d'un axe, on pourra compter le nombre fois ot 1'objet en

Par exemple, imaginons que I'on veuille compter le nombre de tours par rotation est détecté dans un opto-coupleur. A ce stade, on sait faire comme on

[7 s] . 1. 4, .
seconde d'un axe en rotation. Pour réaliser cette mesure, on va avoir besoin de I'a vu dans un programme précédent : il suffit d'incrémenter une variable.
2 choses :

* d'une base temps fixe, autrement dit une durée précise pendant
laquelle on va compter la survenue d'un événement

* d'un « compteur » qui va permettre de comptabiliser tous les
événements qui sont survenus pendant la durée du comptage.

Exemple de comptage en rotation par opto-coupleur

Fixer un délai de comptage

Pour fixer un délai de comptage, on va se baser sur l'instruction Arduino
millis() qui renvoie a tout moment le nombre de millisecondes écoulées depuis
la mise sous tension de I'Arduino.

Pour fixer un délai de comptage fixe, on va utiliser 2 variables :
* une pour mémoriser la derniére valeur de millis() prise en compte

* une pour fixer le délai de comptage et permettre d'évaluer si le délai
voulu s'est écoulé.

La stratégie de programmation va consister a :

P AP e mémoriser la valeur de millis()
La fréquence de survenue de 1'événement vaudra :

(e = mom b AW et | b dle s * tester a chaque passage de loop() si le délai de comptage est écoulé

e sioui:
o exécuter les instructions voulues
o remettre a zéro les variables de comptages
o mémoriser la nouvelle valeur de millis()

e et ainsi de suite...

Purchased by Paul Frogerais, paul.frogerais@gmail.com #4605415
Atelier Arduino : Introduction aux interruptions, les interruptions externes et les interruptions a intervalle régulier. p.23/41

19. Mesurer la vitesse de rotation d'un axe : la mécanique

+ CoOté électronique, on va utiliser le méme montage que vu précédemment (optocoupleur seul connecté sur la broche 2).

+ CoOté mécanique, on va ici utiliser un simple axe sur lequel on va fixer une languette de bois. On positionne I'axe de fagon a ce que la languette de bois passe
dans l'opto-coupleur a chaque rotation, ce qui va permettre de compter la vitesse de rotation de 1'axe.

L'axe est fixé de maniére a ce qu'une languette de bois fixée sur l'axe
passe dans la fente de I'opto-coupleur...
Chaque rotation entrainera 2 transitions « HAUT-BAS » : le nombre de tours sera nombre transition / 2

Applications possibles
Le comptage du nombre de tours a I'aide d'une interruption externe pourra étre utilisé pour toutes sortes de comptage de vitesse en rotation,
notamment pour un anémometre, un compte tour de vélo, etc...

Purchased by Paul Frogerais, paul.frogerais@gmail.com #4605415
Atelier Arduino : Introduction aux interruptions, les interruptions externes et les interruptions a intervalle régulier. p.24/41

20. Comptage de la fréquence de rotation d'un axe a I'aide d'une interruption externe : le programme

Ce qu'on va faire ici...

+ Dans ce programme, nous allons réaliser la méme chose qu'un code présenté dans le tuto dédié aux capteurs ON/OFF numériques, mais ici en utilisant une
interruption.

* Nous allons appliquer ce que nous venons de voir en comptant le nombre de tours par 10 secondes d'un axe tournant a vitesse variable. Cette application est
plutot applicable a des mesures de vitesse peu élevées, de moins de 25 tours/seconde.

Entéte déclarative
Variables utiles
* On déclare :
© une constante de broche désignant la broche utilisée pour déclencher l'interruption, soit broche 2 (interruption n°0) ou 3 (interruption n°1),
o une variable volatile utilisée pour le comptage d'événements, et une variable pour mémoriser la derniére valeur,
© une variable pour mémoriser le dernier millis() pris en compte et une variable fixant le délai a prendre en compte en millisecondes.

//--- entete déclarative = déclarer ici variables et constantes globales
const int OPT0=2; // broche de 1'optocoupleur

volatile int compt=0; // variable de comptage volatile
int compt@=0; // variable pour mémoriser derniére valeur

long millis@=0; // variable mémorisation valeur millis()
int delai=10000; // délai de comptage en millisecondes

Purchased by Paul Frogerais, paul.frogerais@gmail.com #4605415
Atelier Arduino : Introduction aux interruptions, les interruptions externes et les interruptions a intervalle régulier. p.25/41

Fonction setup()
Initialisation série
* On initialise le port série a 115200 bauds, a I'aide de l'instruction begin()

Configuration broche utilisée
* On configure en entrée la broche utilisée pour l'interruption

Configuration interruption utilisée
* On configure l'interruption externe n°o, a 1'aide de l'instruction attachInterrupt() en précisant :
o le numéro d'interruption (0 = broche 2 ou 1 = broche 3)
o lenom (sans les ()) de la fonction a appeler, ici la fonction comptage(),
o 1'événement déclencheur, ici le front montant (mot-clé RISING) ou descendant (mot-clé FALLING)
Code initial
* On mémorise la valeur initiale de millis()
* On affiche également un simple message d'accueil

//--- la fonction setup() : exécutée au début et 1 seule fois
void setup() {

Serial.begin(115200); // initialise communication série

pinMode (OPTO, INPUT); // broche en entrée
//digitalWrite(OPTO, HIGH); // rappel au plus

attachInterrupt(®, comptage,FALLING); // Attache l'interruption @ (broche 2) a la fonction
// RISING : détection sur front montant

// FALLING : détection sur front descendant

millis@=millis(); // initialise la valeur de millis

Serial.println("Arduino OK !") ; // message initial

} // fin de la fonction setup()

Purchased by Paul Frogerais, paul.frogerais@gmail.com #4605415
Atelier Arduino : Introduction aux interruptions, les interruptions externes et les interruptions a intervalle régulier. p.26/41

Fonction loop() ()
* A chaque passage on teste si le délai voulu est écoulé depuis la derniere mémorisation de millis(). Si c'est le cas :
o onremet a jour la variable volatile de comptage et la variable de mémorisation de millis()
o on affiche le nombre d'impulsion, de tours par seconde et de tour par minute,

* cequidonne:

//--- la fonction loop() : exécutée ensuite en boucle sans fin
void loop() {

// mettre ici le code a exécuter

if (millis()-millis@>delai) { // si le delai s'est écoulé
compt@=compt; // mémorise comptage actuel
millis@=millis() ; // réinitialise millisO
compt=0; // réinitialise comptage

Serial.print("Delai ecoule.Comptage=");
Serial.print(compt®);

Serial.print(" soit ");
Serial.print(compt0/2);

Serial.print(" tours en 10 secondes");
Serial.print(" soit ");
Serial.print(compt0*3);
Serial.println(" tours par minute");

} // fin si delai écoulé

} // fin de la fonction loop()

Purchased by Paul Frogerais, paul.frogerais@gmail.com #4605415
Atelier Arduino : Introduction aux interruptions, les interruptions externes et les interruptions a intervalle régulier. p.27/41

Fonction de gestion de l'interruption externe

La fonction qui va étre appelée lors de la survenue de l'interruption s'appelle ici comptage()

o cette fonction ne renvoie rien : elle est donc de type void
o elle ne regoit aucun parametre : les parentheses sont laissées vides
© ace niveau, on va tout simplement incrémenter la variable de comptage.

// fonction appelée lors interruption n°0 (broche 2)
void comptage() {

compt=compt+l; // incrémente variable comptage

} // fin gestion interruption

Purchased by Paul Frogerais, paul.frogerais@gmail.com #4605415

Atelier Arduino : Introduction aux interruptions, les interruptions externes et les interruptions a intervalle régulier. p.28/41

Fonctionnement du programme
* Une fois la carte Arduino programmeée, ouvrir le Terminal Série en réglant sur « newline » et « 115200 »,

* puis passer faire tourner 'axe avec languette de bois passant dans la fente de 'opto-coupleur : chaque nouveau passage déclenche l'interruption 1 seule fois,
et donc 2 fois par tour :

e cequidonne...:

r

B JdevittyACMO & & &
“ [send)
Arduino OK !

Delai ecoule, Comptage=1l7 soit 8 tours en 10 secondes soit 51 tours par minute
Delai ecoule, Comptage=1l7 soit 8 tours en 10 secondes soit 51 tours par minute
Delai ecoule.Comptage=14 soit 7 tours en 10 secondes soit 42 tours par minute
Delai ecoule.Comptage=13 soit & tours en 10 secondes soit 39 tours par minute
Delai ecoule.Comptage=14 soit 7 tours en 10 secondes soit 42 tours par minute
Delai ecoule. Comptage=1l soit O tours en 10 secondes soit 3 tours par minute

Delai ecoule. Comptage=0 soit O tours en 10 secondes soit © tours par minute

B Autoscrall [Mewline v | [115200 baud | =

NOTE:

Sur le méme principe, il est possible de mesurer des vitesses rapides, genre moteur en rotation. En fait, il s'avere que l'interruption externe est tres
capricieuse et sensible au champ électromagnétique, probablement en raison d'un défaut de découplage (utiliser un bon condensateur)...

Tout ¢a pour dire qu'il faut savoir que les interruptions externes sont plutot capricieuses et se déclenchent vite de facon intempestive !!!
Et que ca peut vite devenir prise de téte !

00

Purchased by Paul Frogerais, paul.frogerais@gmail.com #4605415
Atelier Arduino : Introduction aux interruptions, les interruptions externes et les interruptions a intervalle régulier. p.29/41

21. Technique : utiliser une interruption a intervalle régulier

Intro

« Jusqu'a présent, nous avons vu l'interruption dite « externe »
intéressante pour prendre en compte des événements issus de
capteurs et nécessitant une grande réactivité.

* Un autre type d'interruption est potentiellement tres utile en
pratique : l'interruption temporelle, autrement dit une interruption
qui survient a intervalle régulier.

* Une telle interruption permettra de libérer le processeur pendant le

délai entre 2 événements, au lieu de bloquer le programme avec une
pause de type delay() qui bloque le programme.

Rappel : déroulement d'une interruption
. En interne, lorsqu'une interruption survient, le microprocesseur :
°o metledrapeau a1

o saute a une zone spéciale de la mémoire programme correspondant a la routine
d'interruption (parfois appelée aussi ISR pour Interruption Service Routine) :

= aceniveau, au sein du code, on peut tester les « flags » pour savoir quelle
interruption a été déclenchée

= le code voulu est exécuté
o le drapeau doit étre remis a o

o puis le microcontrdleur quitte la routine d'interruption et reprend 1'exécution du
programme la ou elle s'était interrompue.

) gt o e reprend
o'-'i""'""mmn . l':: 1 1,31 !y r?jg;c:]r:\:_:* s+:ppé
T mi ao
le drapeau &S

Coeur du programme
Fonction Loop i Bouclg
o instructions exécutées sans fin
“saute” en boucle
rogramme saute
Sl rrupion v
au code de |'interrup \
- TR Si interruption
~* | est déclenchée.

h 4

Fonction de

Lorsque la gestion de

gestion des Gestion Interruption . 1
Interruptions l'interruption est terminée
\:\\
i scuté,
Une fois le code execy

remetire le drapeau @ 0

Purchased by Paul Frogerais, paul.frogerais@gmail.com #4605415
Atelier Arduino : Introduction aux interruptions, les interruptions externes et les interruptions a intervalle régulier. p.30/41

Les timers de I'Arduino

* Comme nous avons déja eu 'occasion de le dire, I'Arduino dispose
(version UNO) de 3 timers (ou horloges internes) :

o letimer o utilisé par millis() et analogWrite() sur broche 5 et 6
o letimer 1 utilisé par analogWrite() sur broche 9 et 10
o le timer 2 utilisé par analogWrite() sur broche 3 et 11

* On voit ici que tous les timers de 1'Arduino sont utilisés, mais il va
néanmoins étre possible de les utiliser, en perdant cependant la
génération PWM sur certaines broches.

Générer une interruption temporelle avec une librairie

* Ala différence des interruptions externes, les interruptions
« temporelles » ne sont pas directement implémentées dans le langage
Arduino. Pour le faire, on va devoir utiliser une librairie externe.
Heureusement pour nous il en existe plusieurs, notamment :

e Librairie TimerOne

o Site officiel : htt code.google.com/p/arduino-timerone

o Doc sur le playground ARduino :
http://arduino.cc/playground/Code/Timer1

* Librairie MSTimer2 :
o simple a utiliser — configurable en millisecondes
o Site officiel :

http://www.pjrc.com/teensy/td libs MsTimer2.html

o Doc sur le playground Arduino :
http://arduino.cc/playground/Main/MsTimer2

¢ Librairie FlexTimer2 :

o simple aussi, configurable en unités de temps de son choix
simplement
o Site Officiel : https://github.com/wimleers/flexitimer2

o Doc sur le playground Arduino :

http://www.arduino.cc/playground/Main/FlexiTimer2

Remarque
Je signale ici quelques possibilités : il en existe stirement d'autres...

http://www.arduino.cc/playground/Main/FlexiTimer2
https://github.com/wimleers/flexitimer2
http://arduino.cc/playground/Main/MsTimer2
http://www.pjrc.com/teensy/td_libs_MsTimer2.html
http://arduino.cc/playground/Code/Timer1
http://code.google.com/p/arduino-timerone/

22. Arduino : La librairie MsTimer2

La librairie MSTimer2 Inclusion
» Lalibrairie MSTimer2 permet de générer tres simplement une * Oninclut la librairie dans un programme avec l'instruction #include
interruption a intervalle régulier en se basant sur le Timer 2 (on perd (sans ; en fin de ligne +++) suivi du nom de la librairie :
la génération PWM sur les broches 3 et 11) #include <MsTimer2.h> // inclusion de la librairie Timer2

Télécharger la librairie

» Site officiel : http://www.pjre.com/teensy/td libs MsTimer2.html
Documentation de la librairie

Le constructeur principal

* Le constructeur est implicite (= acessible directement = pas besoin de
le déclarer, comme Serial) se nomme MsTimer2 :

* Doc sur le playground Arduino : MsTimer2
http://arduino.cc/playground /Main/MsTimer2
Installation

Fonctions de la librairie

* Télécharger l'archive. au format zip ou autre. L'extraire . e N
8 P * Les fonctions de la librairie sont au nombre de 3, trés simple :

e Vérifier que le nom du répertoire de la librairie est strictement le méme que le

nom du fichier *.h ou *.cpp principal. Corriger au besoin. Ici le nom est o set(duree, fonction) : configure l'interruption ou
MsTimer2 = duree est le délai entre 2 appels de l'interruption en ms
* Copier/coller le répertoire de la librairie dans le répertoire libraries de votre = fonction est le nom de la fonction a appeler sans les ()
répertoire Arduino) B)
o .
* Relancer Arduino et vérifier que la librairie est présente dans le menu Sketch start() : démarre l'interruption
> ImportLibrary. o stop() : désactive l'interruption
File Edit [y Toals Halp * Les fonctions sont accessibles sous la forme C++ suivante :
4 || arduino-1.0 || libraries || MsTimer2| Verify f Compile Ctrl+R MSTimCrZIfOHCtiOH()
Nom A ietch s::“’ lsmd’ Folder Ctrl+k aladifférence de la forme classique Arduino :
=y 1 Add File.. .
Import Library... = Ry Classelfonctlon()
keywords.txt digitalwr
MsTimer2.cpp EEPROM
MsTimer2.h S Note :
Firmata

On retrouve ici les mémes fonctions qu'un objet dit « Timer » qui existe
dans plusieurs langages de haut niveau, notamment Python.

Encore une fois, le langage Arduino prépare le terrain pour l'apprentissage
de langages plus élaborés.

Purchased by Paul Frogerais, paul.frogerais@gmail.com #4605415
Atelier Arduino : Introduction aux interruptions, les interruptions externes et les interruptions a intervalle régulier. p.31/41

http://arduino.cc/playground/Main/MsTimer2
http://www.pjrc.com/teensy/td_libs_MsTimer2.html

23. Exemple d'utilisation : Faire clignoter une LED en utilisant une interruption temporelle : le montage

* Onvareprendre ici le premier montage que vous avez di réalisé lorsque vous appris Arduino : une simple LED en série avec sa résistance sur la broche 2 :

-~ —,
Carte
Arduino UsH o
0 g
SCK
[Resat MISO IF]
e % MOSIPWM
T Rea SEFWM @
w0 PWM =
mo w
B +Vin (7-12v)]
PWI
AL PWM g
A1 =
mAZ F INT1/ PWME
| A3 :g_' INTO
mad 00 b 2TX1m
B AS SO < - +.4 |
A A

Purchased by Paul Frogerais, paul.frogerais@gmail.com #4605415
Atelier Arduino : Introduction aux interruptions, les interruptions externes et les interruptions a intervalle régulier. p.32/41

24. Faire clignoter une LED en utilisant une interruption temporelle : le programme

Ce qu'on va faire ici...

» Dans ce programme, nous allons ... faire clignoter une LED !! Non, non, ce n'est pas une blague... Bon, vous allez me dire que je vous fais régresser... retour a
la case départ... tout ¢a pour ¢a ??? Je vous rassure, je ne me moque pas de vous... !

* Bon, je sais, c'est pas extraordinaire... mais ¢a va vous montrer comment faire clignoter une LED.... en libérant le micro-contrdleur qui ne sera pas obligé de
passer son temps a exécuter la fonction delay() : on va utiliser ici une interruption « temporelle » ! Aller, c'est parti... rien de bien sorcier, vous allez voir !

Entéte déclarative

Inclusion des librairies

¢ On commence par inclure la librairie MsTimer2 que vous avez dii installer précédemment (enfin, si vous avez fait ce que je vous ai dit... sinon, et bien faites-
le!),

Variables utiles

* On déclare :
© une constante de broche désignant la broche utilisée pour la LED

//--- inclusion des librairies
#include <MsTimer2.h> // inclusion de la librairie Timer2
//--- entete déclarative = déclarer ici variables et constantes globales

const int LED=2; //declaration constante de broche

Purchased by Paul Frogerais, paul.frogerais@gmail.com #4605415
Atelier Arduino : Introduction aux interruptions, les interruptions externes et les interruptions a intervalle régulier. p.33/41

Fonction setup()

Configuration broche utilisée
* On configure en entrée la broche utilisée pour l'interruption

Configuration interruption utilisée
* On configure l'interruption du Timer 2 :
o tout d'abord on initialise l'interruption avec la fonction set() en fixant
= e délai entre 2 appels de l'interruption en ms, ici 1000 ms
=]e nom de la fonction a appeler sans les () : ici interruptTimer2

o puis on démarre l'interruption avec la fonction start() : ceci a pour effet de déclencher l'interruption toutes les 1000ms et donc d'appeler la fonction
interruptTimer2 toutes les 1000ms.

//--- la fonction setup() : exécutée au début et 1 seule fois
void setup() {

pinMode(LED, OUTPUT); //met la broche en sortie
// initialisation interruption Timer 2

MsTimer2::set (1000, interruptTimer2); // période 1000ms
MsTimer2::start(); // active Timer 2

} // fin de la fonction setup()

Purchased by Paul Frogerais, paul.frogerais@gmail.com #4605415
Atelier Arduino : Introduction aux interruptions, les interruptions externes et les interruptions a intervalle régulier. p.34/41

Fonction loop() ()

* On laisse la fonction loop () vide : tout se passe dans la routine de gestion de l'interruption :

//--- la fonction loop() : exécutée ensuite en boucle sans fin
void loop() {

// laissée vide

} // fin de la fonction loop()

Purchased by Paul Frogerais, paul.frogerais@gmail.com #4605415
Atelier Arduino : Introduction aux interruptions, les interruptions externes et les interruptions a intervalle régulier. p.35/41

Fonction de gestion de l'interruption externe

La fonction qui va étre appelée lors de la survenue de l'interruption s'appelle ici interruptTimer2() (on aurait pu donner tout autre nom...) :
o cette fonction ne renvoie rien : elle est donc de type void

o elle ne regoit aucun parametre : les parentheses sont laissées vides

°o aceniveau,onva:

déclarer une variable static, c'est a dire une variable dont la valeur sera mémorisée entre 2 appel de la fonction. Cette variable, de type booléen (=

binaire = 0 ou 1 = HIGH ou LOW) sera initialisée a HIGH. Malgré les apparences, bien comprendre que cette variable est initialisée a HIGH
SEULEMENT LORS DU PREMIER APPEL DE LA FONCTION. Lors des autres appels, la valeur courante sera utilisée.

= ensuite, on met la broche dans 1'état fixé par la variable static déclarée,

puis on inverse son état a I'aide d'une notation typique du C : le ! devant la variable booléenne, ce qui la rend HIGH si elle est LOW, LOW si elle est
HIGH, etc... vous avez compris ?

*+ Sionserésume:
o au premier passage :
= Javariable static est déclarée et mise a HIGH
= Jabroche est donc mise a HIGH : la LED s'allume
= puis la variable est mise 8 LOW

© au passage suivant :

= Jabroche est mise dans 1'état de la variable static qui a été mémorisée : la LED est donc allumeée si était éteinte et inversement

= puis la variable static est a nouveau inversée

o etc...: au final, la LED clignote toutes les secondes !

// fonction appelée lors interruption Timer2
void interruptTimer2() { // debut de la fonction d'interruption Timer2

static boolean etatLED=HIGH; // variable statique initialisée a HIGH

digitalWrite(LED, etatLED);
etatLED=!etatLED; // inverse la variable

} // fin InterruptTimer2()

Purchased by Paul Frogerais, paul.frogerais@gmail.com #4605415

Atelier Arduino : Introduction aux interruptions, les interruptions externes et les interruptions a intervalle régulier. p.36/41

Fonctionnement du programme
* Une fois la carte Arduino programmeée, la LED clignote !

Remarque :

Derriére une apparence assez simple a premiére vue, ce petit code vous apprend au passage plusieurs choses importantes :
comment utiliser une interruption générée a intervalle régulier, permettant de libérer le temps « utile » pour faire autre chose,
comment mémoriser une variable entre 2 appels au sein d'une fonction a I'aide du qualificateur static,
comment inverser une variable booléenne (ou binaire) en la faisant précéder du sigle !

Sympa non ?
Notez tout ¢a sur vos tablettes, ¢a vous servira a l'occasion !

Purchased by Paul Frogerais, paul.frogerais@gmail.com #4605415
Atelier Arduino : Introduction aux interruptions, les interruptions externes et les interruptions a intervalle régulier. p.37/41

25. Les éléments du langage Arduino étudiés dans cet atelier

Structure Variables et constantes Fonctions
 static Interruptions Externes
» volatile + attachInterrupt(interruption, fonction, mode)

+ detachInterrupt(interruption)
Interruptions

* interrupts()
* nolnterrupts()

La documentation complete du langage Ardulno en franc;als est dlsponlble ici:

Pour aller plus loin avec les interruptions :
Si vous avez des besoins précis plus avancés utilisant les interruptions, vous pourrez utilement consulter la documentation de la librairie native interrupt.h ici :

http://www.nongnu.org/avr-libc/user-manual/group___avr__interrupts.html

Purchased by Paul Frogerais, paul.frogerais@gmail.com #4605415
Atelier Arduino : Introduction aux interruptions, les interruptions externes et les interruptions a intervalle régulier. p.38/41

http://www.nongnu.org/avr-libc/user-manual/group__avr__interrupts.html
http://www.mon-club-elec.fr/pmwiki_reference_arduino/pmwiki.php?n=Main.ReferenceMaxi
http://www.mon-club-elec.fr/pmwiki_reference_arduino/pmwiki.php?n=Main.NoInterrupts
http://www.mon-club-elec.fr/pmwiki_reference_arduino/pmwiki.php?n=Main.Interrupts
http://www.mon-club-elec.fr/pmwiki_reference_arduino/pmwiki.php?n=Main.DetachInterrupt
http://www.mon-club-elec.fr/pmwiki_reference_arduino/pmwiki.php?n=Main.AttachInterrupt
http://www.mon-club-elec.fr/pmwiki_reference_arduino/pmwiki.php?n=Main.Volatile
http://www.mon-club-elec.fr/pmwiki_reference_arduino/pmwiki.php?n=Main.Static

26. A présent, vous devriez étre capable :

» d'expliquer le concept d'interruption
* de comprendre comment fonctionne une interruption
o d'utiliser les interruptions externes
o d'utiliser les interruptions a intervalles réguliers
... afin d'étre en mesure de créer des programmes plus efficients et optimisant les temps d'utilisation du microprocesseur de I'Arduino.

Purchased by Paul Frogerais, paul.frogerais@gmail.com #4605415
Atelier Arduino : Introduction aux interruptions, les interruptions externes et les interruptions a intervalle régulier. p.39/41

Table des matiéres

Introduction aux interruptions, les interruptions externes et les interruptions a intervalle régulier.
Intro |
Matériel nécessaire pour les ateliers Arduino |
Les limites de I'écriture « séquentielle » d'un programme |
Principe d'une interruption et déroulement d'un programme utilisant une interruption |
Technique : pour info : la machinerie interne d'une interruption |
Pour info : les interruptions du microcontréleur ATMega 328 (celui des cartes Arduino UNO) |
Arduino : Les instructions d'activation / désactivation générale des interruptions |
Arduino : Présentation des interruptions externes et des instructions associées |
Arduino : Variables et interruptions : utiliser le qualificateur de variable volatile |
Rappel : Fiche composant : découvrir le transistor et le photo-transistor |
Rappel : Fiche composant : découvrir I'opto-coupleur en fourche |
Pour info : le spectre des ondes électro-magnétiques et de la lumiére visible |
Rappel : Utiliser un opto-coupleur en fourche en tant que capteur numérique : le montage |
Pour info : Visualisation de la sortie de I'opto-coupleur. |
Comptage d'événements a l'aide d'une interruption externe : le programme |
Remarque : utilisation des instructions utilisant des interruptions au sein de la routine d'interruption. |
Technique : Remarque sur les capteurs ON/OFF « mécaniques » et les interruptions externes |
Rappel : Stratégie de programmation : comptage de fréquence |
Mesurer la vitesse de rotation d'un axe : la mécanique |
Comptage de la fréquence de rotation d'un axe a l'aide d'une interruption externe : le programme |
Technique : utiliser une interruption a intervalle régulier |
Arduino : La librairie MsTimer2 |
Exemple d'utilisation : Faire clignoter une LED en utilisant une interruption temporelle : le montage |
Comptage de la fréquence de rotation d'un axe a l'aide d'une interruption externe : le programme |
Les ¢léments du langage Arduino étudiés dans cet atelier |
A présent, vous devriez étre capable : |

Purchased by Paul Frogerais, paul.frogerais@gmail.com #4605415
Atelier Arduino : Introduction aux interruptions, les interruptions externes et les interruptions a intervalle régulier. p.40/41

Bravo !
vous avez terminé cet atelier Arduino !

Prét pour la suite ? Retrouvez de nombreux autres themes d'ateliers Arduino ici :
http://www.mon-club-elec.fr/pmwiki mon_club_elec/pmwiki.php?n=MAIN.ATELIERS

Purchased by Paul Frogerais, paul.frogerais@gmail.com #4605415
Atelier Arduino : Introduction aux interruptions, les interruptions externes et les interruptions a intervalle régulier. p.41/41

http://www.mon-club-elec.fr//pmwiki_mon_club_elec/pmwiki.php?n=MAIN.ATELIERS

	Introduction aux interruptions, les interruptions externes et les interruptions à intervalle régulier.
	1. Intro
	2. Matériel nécessaire pour les ateliers Arduino
	De l'espace de développement Arduino
	Du nécessaire pour réaliser des montages sans soudure
	De quelques composants de base

	3. Les limites de l'écriture « séquentielle » d'un programme
	Le déroulement type d'un programme
	Le problème
	Lecture de l'état d'une broche en entrée
	Temporisation et pause

	La solution : utiliser une interruption

	4. Principe d'une interruption et déroulement d'un programme utilisant une interruption
	Une image pour comprendre
	Principe général d'une interruption
	Déroulement d'un programme utilisant une interruption

	5. Technique : pour info : la machinerie interne d'une interruption
	Le microcontrôleur, vu de l'intérieur...
	Principe du contrôle d'une interruption
	Activation d'une interruption
	Déroulement d'une interruption

	6. Pour info : les interruptions du microcontrôleur ATMega 328 (celui des cartes Arduino UNO)
	Vue d'ensemble
	Classification des interruptions
	Interruptions « invisibles » utilisées par le langage Arduino
	Interruptions accessibles à partir du langage Arduino

	7. Arduino : Les instructions d'activation / désactivation générale des interruptions
	Au démarrage
	Pour info : le principe d'activation des interruptions
	Les instructions d'activation/désactivation des interruptions

	8. Arduino : Présentation des interruptions externes et des instructions associées
	Les interruptions externes: principe
	Les différents événements déclencheurs possibles
	Les broches utilisables
	Les instructions Arduino utilisables

	9. Arduino : Variables et interruptions : utiliser le qualificateur de variable volatile
	Le stockage des variables « classique »
	La solution ? Utiliser le qualificateur de variable « volatile »
	Principe d'utilisation
	Code d'exemple

	10. Rappel : Fiche composant : découvrir le transistor et le photo-transistor
	Description
	Principe de fonctionnement
	Modes de fonctionnement d'un transistor
	Une variante du transistor : le photo-transistor
	Les transistors avec Arduino en pratique

	11. Rappel : Fiche composant : découvrir l'opto-coupleur en fourche
	Description
	Schéma interne
	Principe de fonctionnement
	Le montage type
	Principe d'utilisation sur une plaque d'essai

	12. Pour info : le spectre des ondes électro-magnétiques et de la lumière visible
	13. Rappel : Utiliser un opto-coupleur en fourche en tant que capteur numérique : le montage
	Comprendre comment çà marche

	14. Pour info : Visualisation de la sortie de l'opto-coupleur.
	15. Comptage d'événements à l'aide d'une interruption externe : le programme
	Ce qu'on va faire ici...
	Entête déclarative
	Variables utiles

	Fonction setup()
	Initialisation série
	Configuration broche utilisée
	Configuration interruption utilisée
	Code initial

	Fonction loop() ()
	Fonction de gestion de l'interruption externe
	Fonctionnement du programme

	16. Remarque : utilisation des instructions utilisant des interruptions au sein de la routine d'interruption.
	Intro
	Euh, mais c'est pourtant ce qu'on vient de faire !?
	On fait comment alors ?
	Exemple

	17. Technique : Remarque sur les capteurs ON/OFF « mécaniques » et les interruptions externes
	Intro
	Rappel : Comparatif bouton poussoir (« mécanique ») et capteur numérique ON/OFF (« non-mécanique »)
	Le problème
	Exemple

	18. Rappel : Stratégie de programmation : comptage de fréquence
	Notion de fréquence
	Comptage des événements
	Fixer un délai de comptage

	19. Mesurer la vitesse de rotation d'un axe : la mécanique
	20. Comptage de la fréquence de rotation d'un axe à l'aide d'une interruption externe : le programme
	Ce qu'on va faire ici...
	Entête déclarative
	Variables utiles

	Fonction setup()
	Initialisation série
	Configuration broche utilisée
	Configuration interruption utilisée
	Code initial

	Fonction loop() ()
	Fonction de gestion de l'interruption externe
	Fonctionnement du programme

	21. Technique : utiliser une interruption à intervalle régulier
	Intro
	Rappel : déroulement d'une interruption
	Les timers de l'Arduino
	Générer une interruption temporelle avec une librairie

	22. Arduino : La librairie MsTimer2
	La librairie MSTimer2
	Télécharger la librairie
	Documentation de la librairie
	Installation
	Inclusion
	Le constructeur principal
	Fonctions de la librairie

	23. Exemple d'utilisation : Faire clignoter une LED en utilisant une interruption temporelle : le montage
	24. Faire clignoter une LED en utilisant une interruption temporelle : le programme
	Ce qu'on va faire ici...
	Entête déclarative
	Inclusion des librairies
	Variables utiles

	Fonction setup()
	Configuration broche utilisée
	Configuration interruption utilisée

	Fonction loop() ()
	Fonction de gestion de l'interruption externe
	Fonctionnement du programme

	25. Les éléments du langage Arduino étudiés dans cet atelier
	Interruptions Externes
	Interruptions

	26. A présent, vous devriez être capable :

